Colorado State University Tropical Weather and Climate Research


Eyewall replacement cycle

Check the publication list of the related research

The Unconventional Eyewall Replacement Cycle of Hurricane Ophelia (2005)


Group Members: Naufal Razin , Michael M. Bell

Using flight-level and airborne radar data, Hurricane Ophelia was shown to have undergone an unconventional eyewall replacement cycle (ERC). Ophelia\'s ERC was unconventional because it occurred while the storm was at Category \1 intensity and located over anomalously cold sea surface temperatures. Airborne radar analyses showed that the expansion of Ophelia\'s wind field associated with the ERC occurred in the dominantly stratiform rainbands, indicating that the stratiform kinematics in Ophelia's rainbands played a dominant role in Ophelia's ERC.

How do the asymmetric processes impact Hurricane Matthew's (2016) Eyewall replacement cycle?


Group Members: Ting-Yu Cha , Michael M. Bell , Alex DesRosiers

Hurricane Matthew was observed by the NEXRAD KAMX, KMLB, and KJAX polarimetric radars and NOAA P-3 airborne radar when it approached the southeastern United States during an ERC event. The radar observations indicate that Matthew's primary eyewall was replaced with a weaker outer eyewall, but unlike a classic ERC, Matthew did not reintensify after the inner eyewall disappeared. The single-Doppler analyses indicate that the inner eyewall decayed a few hours after the P-3 flight, while the outer eyewall contracted but did not reintensify and the asymmetries increased episodically. The analysis suggests that the resilient outer eyewall was influenced by both environmental vertical wind shear and an internal vortex Rossby wave damping mechanism during the ERC evolution.