A Simplified Approach to Understanding Boundary Layer Structure Impacts on Tropical Cyclone Intensity

Eleanor G. Casas and Michael M. Bel Colorado State University, Fort Collins, Colorado

Introduction

The TCBL is approximately the lowest 1 km of a TC (Fig. 1), and it is known to be important for TC intensification because it is the primary: so
enthalpy; sink of momentum; and region that converges angular momentum via frictionally forced radial inflow. However, the complex linear interactions between TCBL structure and TC intensity are not wel understood due to limited observations of the TCBL.

While surface friction is known to be important for TC intensity change, the exact magnitudes of the drag coefficient $\left(\mathcal{C}_{D}\right)$ in the TCBL are not well
known due to the non-linear relationship between the changing ocean known due to the non-linear relationship between the changing ocean
surface structure with increasingly large surface wind speeds (Fig. 2). Additionally, the effects of C_{D} on $T C$ intensity change are also uncertain.

This study seeks to simplify these complex, non-linear interactions between surface friction, TCBL structure, and TC intensity change through between surface friction, 1 CBL structure, and TC intensity change through principles in the form of a logistic growth equation (LGE), and it can be adapted to retrieve C_{D} from TCBL structure
Research Questions

Methods
Part 1: Derive the Framework
Start with the tangential wind component of the momentum eq

$$
\begin{aligned}
& \frac{\partial \bar{v}}{\partial t}+\bar{u} \frac{\partial \bar{v}}{\partial r}+0+\bar{w} \frac{\partial \bar{v}}{\partial z}+\frac{\bar{u} \bar{v}}{r}+f \bar{u}=F_{\lambda} \\
& \begin{array}{c}
\text { Eulerian } \\
\text { Tendency } \\
\text { Radial } \\
\text { Fanvection andiad Vertical Centrifitual Coriolis }
\end{array}
\end{aligned}
$$

Part 3: Test the Framework with Observations
Test with the published analyses of Hurricanes Fabian and lsabel (2003) from Bell et al. (2012), as well as with new analyses of Hurricane Joaquin (2015) that are developed from the Tropical Cyclone Intensity Experiment (2015)
dropsondes (Fig 4). Results of C_{0} from Hurricanes Fabian and Isabel are then dropsondes (Fig. 4). Results of $\mathrm{C}_{\text {f }}$ from Hurricanes Fabian and Isabel are then
compared with previously published $\mathrm{C}_{\text {e }}$ estimates.

[^0]

Part 3 Results: Observations

Conclusions
The new conceptual relationships between surface friction, TCBL structure, and TC intensity proposed in this study are shown to exist in the simplified summarized below (Fig. 13).

Applying this conceptual framework towards C_{D} retrievals from observations shows promise, but future work quantifying error is needed. Preliminary tests
with CM1 show that individual errors can be optimized to within 100% if an appropriate constant u can be assumed. Testing with observations show a bias for Hurricanes Fabian and lsabel (2003) compared to the method proposed by Bell et al. (2012), but retrievals are within the range of overall C_{0} uncertainty,

Acknowledgement
This research is supported by the ONR Young Investigator Program awards NO00141613033 and N000141712230

[^0]:

