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ABSTRACT

Understanding drop size distribution (DSD) variability has important implications for remote sensing and

numericalmodeling applications. Twelve disdrometer datasets across three latitude bands are analyzed in this

study, spanning a broad range of precipitation regimes: light rain, orographic, deep convective, organized

midlatitude, and tropical oceanic. Principal component analysis (PCA) is used to reveal comprehensive

modes of global DSD spatial and temporal variability. Although the locations contain different distributions

of individual DSD parameters, all locations are found to have the same modes of variability. Based on PCA,

six groups of points with unique DSD characteristics emerge. The physical processes that underpin these

groups are revealed through supporting radar observations. Group 1 (group 2) is characterized by high (low)

liquid water content (LWC), broad (narrow) distribution widths, and large (small)median drop diametersD0.

Radar analysis identifies group 1 (group 2) as convective (stratiform) rainfall. Group 3 is characterized by

weak, shallow radar echoes and large concentrations of small drops, indicative of warm rain showers. Group 4

identifies heavy stratiform precipitation. The low latitudes exhibit distinct bimodal distributions of the nor-

malized intercept parameterNw, LWC, andD0 and are found to have a clustering of points (group 5) with high

rain rates, largeNw, and moderateD0, a signature of robust warm rain processes. A distinct group associated

with ice-based convection (group 6) emerges in the midlatitudes. Although all locations exhibit the same

covariance of parameters associated with these groups, it is likely that the physical processes responsible for

shaping the DSDs vary as a function of location.

1. Introduction

Understanding the variability of drop size distributions

(DSDs) around the globe is important for remote sensing

of precipitation, retrieving distributions of latent heating,

and parameterizing microphysical processes in numerical

models. Remote sensing retrievals routinely make as-

sumptions about DSDs to relate observations to physical

quantities (Munchak et al. 2012). For example, the DSD

fundamentally determines the relationship between radar

reflectivity Z and rainfall R, with individual relationships

varying with location and storm type (e.g., Battan 1973;

Atlas et al. 1999; Ulbrich and Atlas 2007). Additionally,

many bulk numerical model parameterizations employ

two-moment microphysical schemes where the number

concentration andmassmixing ratio of eachhydrometeor

type are predicted and mean size is diagnosed, thus re-

quiring that a fixed shape parameter m be assumed

if a gamma distribution is used (e.g., Meyers et al. 1997;

Saleeby and Cotton 2004). However, m assumptions may

introduce undesirable effects regarding the development

of precipitation (Uijlenhoet et al. 2003; Milbrandt and

Yau 2005).

DSD variability is determined by cloud-scale processes

as well as environmental characteristics (Cotton et al.

2011). For example, in convection, strong updrafts can

lead to supercooled liquid water in the mixed-phase re-

gion, thereby promoting the growth of graupel and hail

via accretion. Upon melting, large drops are formed,

which may fall out or undergo additional coalescence

growth below the melting level. Evaporation may occur
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below cloud base, which preferentially removes smaller

drops. In contrast, weak vertical motions in stratiform

precipitation allow for ice crystals to grow initially via

deposition followed by aggregation and possibly riming

(Rutledge and Houze 1987; Houze 1997).

Previous studies have investigated DSDs in different

locations around the world. Bringi et al. (2003, 2009,

hereafter BR03, BR09) initially separated disdrometer

data into convective and stratiform DSDs using a thresh-

old on the standard deviation of the rain rate (over five

consecutive 2-min samples). Distinct clustering was

identified within the parameter space of the mass-

weighted mean diameterDm and normalized intercept

Nw. The clusters were identified as continental and

maritime convection as well as stratiform rain. BR09

also found the same convective and stratiform clusters

of DSD parameters when Dm and Nw were derived

from polarimetric radar, leading to the rendering of a

continuous separator line for segregating convective

and stratiform rain. Previous studies have noted a

significant overlap between convective and stratiform

populations in Z–R space at low R, suggesting that a

true separation between these rain types requires ad-

ditional parameters (Yuter and Houze 2002; Atlas

et al. 2000).

Thompson et al. (2015, hereafter T15) built upon

these studies by investigating tropical oceanic rainfall

and found that while stratiform populations were similar

to other regimes, convective precipitation had high Nw

but relatively low median drop diameters D0. This is in

contrast with continental convective regimes, which can

attain larger D0 at lower Nw (Atlas and Ulbrich 2000;

BR03; Ulbrich and Atlas 2007; BR09; Thurai et al.

2010). For instance, ubiquitous shallow, weak convec-

tion identified by T15 over the tropical oceans did not

conform to the BR09 convective–stratiform (C-S) sep-

aration line, which was derived from continental and

coastal rain samples. T15 determined an updated C-S

line for the tropical oceanic regime defined by constant

normalized number concentration logNw.

The goal of this study is to examine a larger, global

disdrometer dataset to investigate DSD variability in

space and time and place some of the previous findings

in a larger context. (Most of the studies reviewed above

focused on specific locations and/or regimes, thereby

limiting generalizations of their findings.) To this end,

we employ the statistical analysis technique of principal

component analysis (PCA) to help interpret and un-

derstand trends in the data. PCA is a powerful tool for

analyzing large and complex datasets because it yields the

most significant modes of variability in a dataset without

requiring any a priori information. PCA is commonly

used in climate analysis to reveal spatial relationships or

patterns in atmospheric quantities, but it has also been

applied to investigate the variability of DSDs relative to

environmental variables (Munchak et al. 2012).Hannachi

et al. (2007) provides a detailed discussion on the various

uses of PCA in atmospheric science.

This study describes the results of applying PCA

to a large disdrometer dataset from diverse locations

across the globe, ranging from low to high latitudes,

including continental and maritime rainfall. The

datasets and PCA methodology are outlined in section 2.

The different locations are compared, and the results of the

PCA are presented in section 3. Polarimetric radar data

are used to attribute physical processes to six distinct

groups resulting from the PCA. The overall results are

discussed and synthesized in section 4.

2. Methodology

a. Disdrometer datasets

Recent campaigns by the Department of Energy

(DOE) Atmospheric Radiation Measurement (ARM)

Program (Ackerman and Stokes 2003) and the National

Aeronautics and Space Administration (NASA) Global

Precipitation Measurement (GPM; Hou et al. 2014)

ground validation (GV) program have greatly expanded

DSD observations globally. We have compiled 12 dis-

drometer datasets from diverse locations and meteo-

rological regimes, spanning from the tropics to the high

latitudes, that are supported by polarimetric radar

observations (Table 1). Two-dimensional video dis-

drometer (2DVD) datasets from tropical ocean (Manus

Island, Papua New Guinea, and Gan Island, Maldives),

tropical coastal (Darwin, Northern Territory, Australia),

midlatitude continental [Southern Great Plains (SGP)],

and high-latitude continental (Finland) locations were

provided by the DOE ARM program. These datasets

were collected in collaboration with several DOE field

campaigns: Tropical Warm Pool–International Cloud

Experiment (TWP-ICE) in 2006 (Darwin), ARM MJO

Investigation Experiment (AMIE) in 2011 (Gan and

Manus Islands), and Biogenic Aerosols—Effects on

Clouds and Climate (BAECC) in a high-latitude boreal

forest (Finland). Collocated disdrometer and polarimetric

radar datasets from coastal orographic high-latitude,

continental high-latitude, midlatitude orographic, and

midlatitude continental locations were provided by

five recent NASA GV experiments [Light Precipita-

tionValidation Experiment (LPVEx): Finland;Midlatitude

Continental Clouds and Convection Experiment (MC3E):

Great Plains; Iowa Flood Studies (IFloodS): Iowa;

Integrated Precipitation and Hydrology Experiment

(IPHEx): southern Appalachian Mountains; and Olympic
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MountainsExperiment (OLYMPEX):Washington State).

Additionally, a midlatitude coastal disdrometer dataset

was collected at NASA Wallops Island, Virginia. The lo-

cations of the datasets are shown in Fig. 1, and a summary

of the data and experiments is given in Table 1. These

datasets ranged in length from six weeks (LPVEx) to five

years (SGP) and sampled from 2080 raining minutes

(;35h; LPVEx) to 78124 raining minutes (;1300h;

OLYMPEX).1 While the NASA GV experiments de-

ployed several instruments to sample spatial variability, all

raining minutes from all described instruments are con-

sidered together for each campaign. Field campaign data

from the same geographic location and/or time are

grouped with corresponding longer-term datasets, result-

ing in eight datasets: IFloodS, SGP, IPHEx, Finland,

tropical ocean, Darwin, OLYMPEX, and Wallops. For

ease of discussion and analysis herein, data have been

grouped by latitude (Fig. 1): high ($458), middle (238–458),
and low (#238), based on the similarities between datasets

in common latitude bands (not shown). This grouping re-

sults in approximately 90000 raining minutes in the high

and low latitudes and 150000min in the midlatitudes, with

each band comprising both field experiments and long-

term installations.

Most of the observations used are derived from a

2DVD (Schönhuber et al. 2008), which uses perpen-

dicular lasers to image drops that fall through the

square catchment area (100 cm2). During TWP-ICE, a

Joss–Waldvogel impact disdrometer (JWD) was used

(Joss and Waldvogel 1967). During OLYMPEX,

five 2DVDs were deployed along with 13 automated

Parsivel units (APU; Battaglia et al. 2010). During

OLYMPEX, the 2DVDs were found to undersample

the number of drops because of high drop concen-

trations in this complex orographic environment. For

this reason, we opted to use the APU optical dis-

drometers for OLYMPEX.

FIG. 1. (a) Locations of disdrometer observations used herein. See Table 1 for individual da-

tasets that fit into the larger eight locations. (b) Distribution of raining minutes as a function of

latitude band.

1 In OLYMPEX, 13 Parsivels were deployed at various topo-

graphic heights. The entire dataset is over 300 000 raining minutes,

larger than all the other datasets combined. Therefore, we selected

three APUs with minimal contamination from frozen precipitation

(Fish Hatchery, Amanda Park, and Bishop Field) for the analysis.
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Following the methodology in T15, 1-min data in

every location were thresholded on the total number of

drops (.100) and rain rate (.0.05mmh21). This

threshold removed on average 30% of the data but less

than 1% of the total rainfall (the drop count threshold

was responsible for the removal of most observations).

These thresholds help prevent small sample sizes from

skewing DSD estimates (Smith et al. 1993; Smith 2016).

The 2DVDs directly measure liquid water content

(LWC; gm23) and rain rate R (mmh21), while an em-

pirical fall speed relationship is used for the JWD and

APUs to obtain LWC and R (Tokay et al. 2001). A

‘‘deadtime correction’’ (Sheppard and Joe 1994) was

applied to the JWD data to account for recovery time of

the instrument transducer following drop impacts

(Williams et al. 2000). Although it would be ideal to have

common platforms across all locations, the availability

of these datasets necessitates using three different in-

struments. Despite different limitations of each instrument

such as limited drop sizes (JWD), overestimates of drop

size in heavy rain (Parsivels), and beam mismatch

(2DVD), previous studies have analyzed the comparative

performance of JWDs, 2DVDs, and Parsivels and gener-

ally found agreement in distribution fits and integrated

parameters (e.g., Tokay et al. 2001; Thurai et al. 2011).We

performed a sensitivity study (not shown) where analysis

with collocated instruments (e.g., 2DVD and APU in

OLYMPEX) confirms that the results presented herein do

not significantly change based on instrument choice.

The mass spectrum can be derived directly from dis-

drometer measurements (Williams et al. 2014):

m(D)5
p

63 103
r
w
N(D)D3 , (1)

where N(D) is measured by the disdrometer as a

function of the size bins and rw is the density of water

(g cm23). The rain DSD can then be described by the

mean mass diameter Dm, which is the first moment of

the mass spectrum, and the mass standard deviation

sm, the square root of the second moment, which rep-

resents the breadth of the mass spectrum. For more

details of this formulation, see Williams et al. (2014).

Rain DSDs have often been described with a modified

gamma distribution (Ulbrich 1983), which is nominally

defined by an intercept,median size, and shape factor that

describes the breadth and slope of the distribution. A

special case of the four-parameter modified gamma dis-

tribution is the normalized gamma with three free pa-

rameters (Petty and Huang 2011). The normalized

gamma distribution accounts for varying LWC (Willis

1984) and is described by the intercept parameter Nw

(m23mm21; we will use logNw for ease), median drop

diameter D0 (mm), and shape parameter m:

N(D)5N
w
f (m)

�
D

D
m

�m

exp

�
2(41m)

D

D
m

�
, (2)

where Nw (mm21m23) is defined as

N
w
5

3:674103LWC

pr
w
D4

0

. (3)

Additionally, Dm is related to the median drop di-

ameter through m:

D
m
5

41m

3:671m
D

0
. (4)

Although the assumption of a normalized gamma fit

to the DSD may not fully capture the true spectrum of

rain DSDs (Thurai et al. 2017), we employ it here to

place our results in context with the wide body of pre-

vious literature that invoked this assumption.

Further details of the gamma distribution can be

found in Bringi and Chandrasekar (2001). To derive the

parameters of the normalized gamma DSD from each

minute of disdrometer data, the Thurai et al. (2014)

methodology was adopted, which fits the gamma pa-

rameters through a m-search technique. For further in-

formation about DSD formulations and processing, see

Bringi and Chandrasekar (2001), Thurai et al. (2014),

and T15. Data were restricted to m values in the range

from 24 to 15 to ensure the gamma fit is a reasonable

assumption. This screening process removed ,1% of

data points in our dataset.

Several datasets included times when frozen pre-

cipitation was present (e.g., LPVEx, OLYMPEX, SGP,

and Finland). For the shorter GV field projects with

multiple 2DVDs, instruments and dates were excluded

from analysis when snow contamination was identified

(LPVEx and OLYMPEX; A. Tokay and J. Zagrodnik

2016, personal communication). However, for the lon-

ger datasets (SGP and Finland), a more automated

method was developed to discard snow-contaminated

observations. A distinct population of data exhibited

lower-than-expected R for a given LWC. Since R is

fundamentally related to the fall speed and size of each

drop, this indicates a population of particles with fall

speeds lower than that of rain (e.g., snow; Yuter et al.

2006). Thus, any days that had 10 or more points that fell

below R 5 9.0 LWC1.1 (determined subjectively based

on the anomalous population and examination of those

days against ASOS observations of snow)were excluded

from the analysis to remove snow contamination.

b. PCA

PCA is a technique often used in atmospheric science

to simplify the analysis of large and complex datasets. In
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essence, PCA uses linear regression to explain the main

modes of variability of a dataset. Hence, the variability

of a dataset is distilled into its most important compo-

nents. PCA can be thought of as a type of pattern or

cluster analysis that explains the covariance of param-

eters simultaneously. Additionally, PCA is empirical in

that the results are based solely on the dataset. For ex-

ample, in the BR03 study, convective and stratiform

DSD were stratified based on rain rate. In PCA, such

assumptions are unnecessary.

PCA results in a set of vectors [also called empirical

orthogonal functions (EOFs)] forming an orthogonal set

of basis vectors and are ordered by their ability to ex-

plain the variability in the dataset. The first EOF is the

vector that explains the largest amount of variance. The

second EOF is orthogonal to the first EOF and describes

the largest fraction of the remaining variance after the

variance from the first vector has been removed. This

process continues until the collective EOFs explain all of

the variance (including noise). For example, if there are

six input parameters, there will be six resulting EOFs,

which will collectively explain 100% of the variance in

the sample dataset. In practice, some studies may con-

centrate on the first few leading EOFs, since successive

EOFs may yield little additional physical interpretation.

For these reasons, we only present the leading two EOFs

for our analysis. A linear combination of the EOF vectors

describes each point in the dataset, the coefficients of

which are known as the principal components (PCs). The

PCs can be thought of as a measure of the resemblance

between a particular data point and an EOF vector.

To prepare the disdrometer data for PCA, we con-

structed M (number of attributes or quantities de-

scribing the DSD) arrays of length N (corresponding to

the number of DSD data points). For the PCA analysis,

we selectedDm,Nw, and sm to describe theDSD and the

integral rain parameters R, LWC, and total number of

drops Nt to describe the DSD variability. These pa-

rameters are selected because they are commonly used

to describe precipitation, they can be easily calculated

from disdrometer measurements, and they provide

meaningful information toward understanding the

physics of rainfall. We have chosen to use the mass

spectrum width sm and the mean mass diameter Dm

instead of the gamma shape parameter m and the me-

dian drop diameterD0 because the former two variables

can be calculated from the disdrometer measurements

without the need to assume a gamma distribution. We

use Nw because it provides information about how the

LWC is distributed across diameter space [Eq. (3)]. The

covariance matrix among the six parameters for each

latitude band and the global dataset are available in the

online supplemental material (Fig. S1). The parameters

ofNw,Nt,R, and LWC are lognormally distributed (e.g.,

Bringi and Chandrasekar 2001; T15) and are therefore

included in the PCA in log form (logNw, logNt, logR,

and logLWC). The data are normalized to standard

anomalies of each characteristic quantity by subtracting

the mean and dividing by the standard deviation. This

was done to prevent quantities with large variances from

dominating the EOFs, which could obscure scientifically

relevant results. Additionally, deviations from the mean

indicate when values are anomalously high or low,

making simultaneous interpretation of multiple quanti-

ties easier. Once each quantity is standardized, the ar-

rays are combined into amatrix ofN rows3M columns.

The PCA returns M orthogonal EOF vectors, with

corresponding values of fractional variance explained,

as well as N PC values (corresponding to each data

point) for each EOF vector.

The orthogonality constraint imposed by PCA can

cause problems in certain situations. First, information

about a particular process may be included in multiple

EOFs because physical processes are not necessarily

orthogonal. Second, each PC series can have positive

and negative values. Since the sign of each EOF is ar-

bitrary, each mode of variability has exactly two oppo-

site components. This can complicate the physical

interpretation of PCA results since physical processes

are not always linear and orthogonal. Nonetheless, PCA

provides an objective lens through which we can look

at a large disdrometer dataset to gain novel insights

about precipitation formation processes.

3. Results

a. Comparisons of datasets

We begin by examining the variability of DSDs across

latitude bands projected in logNw–D0 space (Figs. 2a–c).

The BR09 and T15 C-S separation lines are included for

context. In all locations, the most frequent values are

centered nearD05 1mm, with themedian logNw higher

in the high latitudes (3.8–4) and lower in the mid-

latitudes (3–3.5). The midlatitudes have broader ranges

of D0 and Nw compared to high and low latitudes. The

characteristic bimodality in the tropics of logNw is evi-

dent, which was noted by previous studies. The tropical

distribution of logNw peaks in terms of frequency of

occurrence at 3.4 and also at 4, and these maxima

correspond to convective and stratiform populations

(Ulbrich and Atlas 2007; BR09; Thurai et al. 2010;

Bringi et al. 2012; T15). Indeed, this distinction serves as

the basis for the T15 C-S separation line. We find it cu-

rious that the tropical datasets exhibit such a distinct

bimodality in logNw and D0 associated with C-S rain.
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This bimodality is lacking in other datasets such as the

midlatitudes despite significant convective and strati-

form precipitation components. In fact, the T15 line

appears to cut through the mode of the logNw–D0 dis-

tribution in the high latitudes, suggesting this method is

only appropriate for characterizing C-S precipitation

within the tropical oceans. It is possible that the intense

ice-based precipitation in the midlatitudes somehow

disrupts the clear separation seen in the tropics, where

ice processes are likely weaker or play a lesser role in

overall precipitation. Thus, the oceanic convection is

size limited (e.g., constrained D0) but dependent on

LWC, which directly drives logNw [Eq. (3)]. Another

striking feature of the tropics is the moderate density of

points clustered aroundD05 1.5mmand logNw5 4–5, a

population that is not readily evident in the other loca-

tions. This is associated with a peak in LWC. 1 gm23 at

about D0 5 1.7 (Fig. 2f). Again, the tropics have two

distinct clusters inD0–LWC space that have been noted

in many previous studies (Tokay and Short 1996; Yuter

and Houze 1997; T15) as being associated with convec-

tive (upper branch) and stratiform (lower branch) pre-

cipitation. The midlatitude datasets have a noticeable

extension of large mean diameters for moderate LWC

(Fig. 2e). The high latitudes rarely exceed 1 gm23, with

the most frequent values being 0.1–0.5 gm23 (Fig. 2d).

Interestingly, these median values are higher than the

most frequent values in the other locations (Figs. 2d–f),

which could be due to the atmospheric rivers affecting

the OLYMPEX region (which dominate the high-

latitude sample) bringing ample moisture to the do-

main (Houze et al. 2017).

It is obvious from Fig. 2 that DSDs vary by location

(individual locations shown in Figs. S2 and S3), and as in

the case of C-S separation lines, there may be important

underlying microphysical processes that are responsible

for this variance. It is also clear that no one location fully

captures the entire spectrum of global DSD variability.

Given this regional DSD variability, we aremotivated to

ask, what are the primary modes of temporal and spatial

FIG. 2. Two-dimensional normalized frequency of occurrence as a function of latitude band for (a)–(c) logNw–D0 and (d)–(f) LWC–D0.

The BR09 and T15 C-S lines are presented with gray dashed and solid lines, respectively, in (a)–(c).
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DSD variability across the globe? Can different surface

DSDs be explained and linked to the microphys-

ical processes shaping them aloft? We explore these

questions next.

b. PCA results

Figure 3 shows the first two primary EOFs associated

with theDSD characteristic parameters (logNw,Dm, sm,

logLWC, logR, and logNt). The standard anomaly as-

sociated with each parameter for each of the resulting

EOFs is indicated. Importantly, despite some spread in

the magnitude of the standard anomalies, every location

shows the same modes of covariance in the first two

EOFs. Although we present the aggregate of datasets

in a given latitude band, this finding holds true for every

individual dataset (Fig. S4). Again, we note that the sign

of each PC is arbitrary and that mathematically the

positive and negative modes are exact opposites. We

have neglected the EOFs beyond EOF2, which collec-

tively explain a much smaller amount of variability and

may relate to measurement noise or higher-order tem-

poral variability rather than underlying physical pro-

cesses (Larsen and O’Dell 2016). It is important to note

that the first two EOFs explain ;88% of the variability

across all latitude bands (Table 2). The positive mode of

EOF1 is associated with relatively high logLWC and

logR, large logNw, large D0, and high sm. This EOF

explains 57%–62% of the variability in each location

and 58% globally (Table 2). EOF2, which explains

20%–31% of the variability (30% globally), is charac-

terized by relatively large logNt and logNw and small

D0 and sm in the positive mode but relatively little

variability in logLWC or logR.

To equally compare resulting EOFs from different

locations, each of which may or may not capture the full

breadth of DSD variability, we normalize all data

against the global dataset (i.e., all data combined) by

subtracting the globalmean and dividing by the standard

deviation. All subsequent results are shown relative to

this global normalization and global EOFs.

It is most useful to examine these orthogonal modes of

variability by investigating data points that are most

characteristic of each mode. This is accomplished by

isolating points with the largest PC values, which rep-

resent where the points project most strongly onto an

EOF. To this end, unless otherwise indicated, we select a

threshold of j1.5j (s1.5) for all PCs. The selection of

points that do not meet these criteria will be referred

to as ‘‘ambiguous’’ because they bear resemblance to

multiple EOFs. Here, we note that these threshold

values are somewhat arbitrary and the high thresholds

used herein have been selected to highlight differences

between populations, but the overall results do not

change with the prescribed threshold; larger values re-

sult in more distinct separation between opposing

modes, while smaller values result in more overlap.

The distributions of PC1 and PC2 for each latitude

band are shown in Fig. 4. The s1.5 thresholds are illus-

trated with dashed lines. While the bulk of points

(;77%) are contained below the thresholds (by design),

23% of points meet one or more of these thresholds; in

fact, there is a noticeable population with large absolute

FIG. 3. The first two EOFs for each latitude band and the global dataset (black). Solid lines indicate the positive

modes, and dashed lines indicate the negative modes (where the sign is arbitrary).
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PC1 and PC2 values. Leveraging these PC distributions,

we define six distinct groups. Illustrated by colored

boxes in Fig. 4, these groups are positive PC1 but am-

biguous PC2 (group 1; red), negative PC1 (group 2;

green), positive PC2 but ambiguous PC1 (group 3; yellow),

negative PC2 and ambiguous PC1 (group 4; blue), positive

PC1 and positive PC2 (group 5; orange), and positive PC1

and negative PC2 (group 6; purple).

Already, clear latitudinal differences emerge from

this PC-based grouping (Fig. 4). For example, the high

latitudes have a large number of points in group 3 but

few points in group 5, group 1, or group 6 at the s1.5

threshold. In contrast, the low latitudes have a number

of points in both group 1 and group 5. The midlatitudes

have the largest number of points in group 6 of any

latitude band. The relative percentages of each group in

each band is shown in the supplemental material

(Fig. S5). We will probe the characteristics of each of

these six populations in the next section to understand

their potential origins from a microphysical perspective

and possible implications.

c. DSD parameters

Here, we will cast the results of the PCA into different

formulations and 2D distributions for physical in-

terpretation and comparison with previous studies. For

example, BR09 and T15 found distinct populations in

logNw–D0 and LWC–D0 space, which they attributed to

convective and stratiform rainfall.

Mean gammaDSD, determined by inserting themean

values for Nw, D0, and m into Eq. (2) for each of the six

groups identified above, contrasts the characteristic size

distributions associated with the associated covariance

among the DSD parameters (Fig. 5a). Figure 5b illus-

trates the normalized (section 2b) mean values of the

different parameters for each of the six groups. For

reference, the global mean values of LWC, R, Nt, sm,

and the gamma parameters (logNw, D0, and m) are an-

notated in Fig. 5a, and mean values of the gamma pa-

rameters are listed in Tables 3–5. Group 1 (red) is

associated with R significantly larger than 4mmh21 (the

global mean), shape parameters m , 4, and mean drop

diameters D0 . 1.1mm, resulting in a broad size distri-

bution. In contrast, group 2 (green) is characterized by

narrow size distributions (Fig. 5a) and relatively low R

and LWC (Fig. 5b). Both groups 4 (blue) and 6 (purple)

have strong negative anomalies in m (i.e., smaller than

the global mean of 4), resulting in more exponential-

type (broad) size distributions (Fig. 5a). While having

anomalously large D0 and low logNw, group 6 also has

anomalously high logR, logLWC, and drop concentra-

tions (logNt). Here, we recall that Nw is directly pro-

portional to LWC but inversely proportional toD0
4 [Eq.

(3)]. The resulting anomalously low logNw is due to the

exceptionally high D0 anomalies even though the total

number of drops and LWC are high. Group 3 has a high

logNw consistent with the smallest mean mass-weighted

diameter, indicating a population of numerous small

drops with little size dispersion. This population also has

logLWC and logR values near the global mean. How-

ever, DSDs in group 5 (orange) have the highest

anomalies of logR and logLWC, greatest total number

of drops, and highest logNw.

These PCA-guided groups result in distinct clusters in

2D parameter space (Figs. 6 and 7). Again, we note that

although we only display the aggregate results for the

three latitude bands, these clusters are repeatable in

every dataset considered (see Fig. S6). Perhaps most

striking, but maybe not unexpected because of the or-

thogonality of the EOF analysis, is the distinction in

logNw–D0 space (Figs. 6a–c). Group 1 (red) resides in

themoderate to highD0 andmoderate to low logNw, but

it is clear this group contains the highest LWC obser-

vations in our dataset, along with group 5 (Figs. 7a–c).

This population of points is associated with relatively

low, even negative, values of m (Figs. 6d–i), indicating

broad size distributions (Fig. 5a). The surprising con-

formity of this cluster in the tropics to the robust C-S

lines proposed by T15 and BR09 underpins group 1 as

convective. Conversely, the points in group 2 (green) are

confined to relatively small D0 values and low logNw

because of the combined effect of low LWC and small

D0. The bulk of the population falls in the stratiform

classification for both BR09 and T15 C-S in the tropics.

Additionally, this cluster has generally high m values

(.6), indicating relatively narrow size distributions

(Figs. 6d–f and 5a) or perhaps that a normalized gamma

distribution is inadequate to describe the distribution of

these particular samples (Thurai et al. 2017).

Group 3 (yellow) points are largely restricted to logNw

values larger than 4.5 because of a wide range of LWC

but smallD0 (Figs. 7a–c), with the bulk of the population

having small (,;1.0mm) D0 (Table 3). Group 3 points

span nearly all m (Figs. 6d–i and 7g–i), especially in the

high latitudes, but the majority are larger than m 5 5

(Table 5). The group 3 population falls in the region of

the spectrum that both BR09 and T15 attribute to weak,

shallow radar echoes. Group 4 (blue) is associated with

TABLE 2. Percent variance explained by the first two EOFs.

Experiment EOF1 EOF2 Total

Global 58 30 88

High latitude 57 31 88

Midlatitude 59 20 89

Low latitude 62 26 88
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largeD0 (.1.5mm, up to 3mm) and low logNw (,3.5, as

low as 1), which is a function of both the large sizes and

the relatively low LWC (Fig. 7). Group 4 has m values

generally,3, centered from around21 to 0 (Figs. 6d–f;

Tables 3–5).

The two groups with large absolute values of PC1 and

PC2 (groups 5 and 6; orange and purple, respectively)

have notable properties. Group 5 is more common in the

tropics compared to the midlatitudes and high latitudes.

Group 5 is characterized by the largest total number of

FIG. 4. Frequency density of joint distributions of PC1 and PC2. Dashed red lines illustrate the s1.5 thresholds, and the dashed black lines

indicate the 0 value for PC1 and PC2. Shaded boxes represent the six groups of points with similar characteristics based on PCA.

FIG. 5. (a) Global characteristic size distributions using the mean values for each identified group. Global means of

all data points are indicated. (b) Normalized mean values of parameters for the six groups.
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drops and the largest LWC despite D0 near the global

mean of 1.13mm. These points are exclusively above the

BR09 and the T15 convective lines in the tropics. In

contrast, the midlatitudes have the most points in group

6, which consist of relatively high LWC and moderate

Nt but very large sizes, leading to low logNw values

(Fig. 6b). This group also has the lowest m because of the

large number of drops and large mean D0.

d. Radar observations

We have demonstrated a distinct clustering of surface

DSD parameters and speculated about possible physical

processes producing these distributions. To further in-

vestigate the possible microphysical processes contrib-

uting to theDSDs in each of the six groups, we examined

the vertical structure of radar echoes over specific dis-

drometer locations using polarimetric radar observa-

tions. In each case, range–height indicator (RHI) and/or

plan position indicator (PPI) scans were used to geo-

locate the radar gates above the disdrometer locations,

creating a vertical profile over the disdrometer. These

vertical profiles were then time matched to the dis-

drometer PCA group classifications. This analysis pro-

vides an independent method to study the characteristics

of each group because the radar and the disdrometer are

separate measurements.

Mean reflectivity Z and differential reflectivity Zdr

profiles were created from RHI data for each dis-

drometer PCA group (Fig. 8). It should be noted that for

the radar analysis in this section, the PC thresholds have

been lowered for illustration purposes. That is, the

matched radar–disdrometer times may not have many

points that meet the s1.5 thresholds, since only 22% of

points in the entire disdrometer database meet these

thresholds. To make this problem tractable, we will fo-

cus on specific locations: OLYMPEX to represent the

high latitudes; MC3E, IFloodS, and IPHEx for the

midlatitudes; andGan Island andDarwin for the tropics,

all providing coincident polarimetric data over nearby

disdrometers (Table 6). The disdrometer PC values

spanning five minutes around the radar RHI time were

averaged and used to assign the radar profiles to a par-

ticular group. Six RHI gates over each point are aver-

aged, and RHI gate heights were interpolated to a

common set of heights for comparison. To account for

clutter at the lowest radar bins, the heights start at

0.2 km AGL. The analysis resulted in 1466 (mid-

latitude), 1336 (low latitude), and 3320 (high latitude)

disdrometer/radar matches with precipitation (Table 6).

Mean Z and Zdr for each match were smoothed with a

Gaussian filter in height. In each profile, the 0-dBZ

echo-top height (ETH) was calculated and plotted

against the reflectivity at 2.5 km (Figs. 8g–i) as an esti-

mate of the mean intensity and depth of precipitation in

each group. We recognize the complexities of linking

vertical information to surface observations because of

advection and point-to-volume comparisons, and these

effects may dilute the signal in the analysis below.

However, we have attempted to minimize these effects

through spatial and temporal averaging of the radar and

disdrometer data.

Although the systematic increase in ETH with de-

creasing latitude is evident (perhaps due to the annual

mean tropopause height; Price andRind 1993), there are

clear trends within each group across latitudes (Fig. 8).

Groups 1 and 6 have the highest mean reflectivity values

(for all latitudes) throughout the depth of the column

and significant ETH. Groups 2 and 3 have the lowest

mean reflectivities and lowest ETH. Mean ETH in

group 3 remains below 5km in the high and mid-

latitudes, and mean reflectivities are below 20dBZ in all

latitude bands, suggesting a designation of shallow,

weak warm rain showers for this group. Group 2 has

similar meanZ and ETH values to group 3 and a relative

TABLE 3. Mean D0 values for the six groups using the PC thresholds in Fig. 4.

Experiment All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Global 1.13 1.79 0.67 0.81 2.16 1.35 2.62

High 1.0 1.71 0.59 0.68 1.93 0.98 2.25

Mid 1.18 2.05 0.68 0.70 2.21 1.23 2.71

Low 1.18 1.62 0.70 1.07 2.24 1.39 2.74

TABLE 4. Mean logNw values for the six groups using the PC thresholds in Fig. 4.

Experiment All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Global 3.95 4.19 3.64 4.73 2.87 4.69 3.04

High 4.12 4.14 3.93 4.81 3.08 4.94 3.21

Mid 3.79 3.85 3.53 4.71 2.78 4.80 2.96

Low 3.94 4.34 3.46 4.63 2.82 4.66 3.05
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maximum in Zdr near the environmental freezing level

(e.g., the radar brightband signature). We suggest that

this group is likely associated with weak vertical motions

indicative of stratiform precipitation, where particles

grow by vapor deposition and aggregation and thenmelt

as they fall below the 08C level (Houze 1997) or are

detrained from deep convection and continue to grow in

mesoscale updrafts as they fall out (Rutledge andHouze

1987). These processes fundamentally limit the maxi-

mum drop diameters and rain rates (Yuter and Houze

2002). Group 4 has a very distinct signature, especially in

the midlatitude samples. Group 4 has high ETH and

modest peak reflectivities (,30dBZ). At subfreezing

temperatures, radar reflectivities increase toward the

melting layer while Zdr is slightly positive aloft and then

decrease toward the melting layer, reaching a minimum

near 0 dB just above the environmental melting layer.

While this behavior is evident in all midlatitude Zdr

profiles, it is most notable in group 4. This is consistent

with small-oriented ice crystals aloft (Kennedy and

Rutledge 2011; evident by weak reflectivity and positive

Zdr) that begin to aggregate to form larger particles that

increase reflectivity and decrease Zdr to near zero (as-

sociated with very low bulk density and small degrees of

oblateness). However, once these particles begin to

melt, they produce a sharp increase in both reflectivity

and Zdr (e.g., the radar brightband signature). We

postulate that group 4 is consistent with deposition–

aggregation-driven stratiform precipitation. There were

too few coincident RHIs in group 5 in the midlatitude

samples (,20), so they are not shown. At Gan Island

(OLYMPEX), themeanETH for group 5 reaches 8 (5) km

compared to the deeper groups 1 and 6, at ;9 (6) km. In

both locations,Z values are larger than group 2 or group

3, particularly below the melting layer. In the low lati-

tudes, Zdr remains constant or increases slightly below

the melting layer while Z increases, which is a signa-

ture of robust collision–coalescence in the warm layer

(Kumjian and Prat 2014). The group 5 signature in

OLYMPEX is associated with decreasing Zdr in the

shallow warm layer. This signature has been attributed

to drop breakup (Kumjian and Prat 2014); however, this

mechanism is unlikely in theOLYMPEX regime because

of the short fall distance of drops and generally small drop

sizes. Therefore, the physical processes underpinning

group 5 in the high latitudes is unclear. TheZdr profiles of

group 6 exhibit increases below the melting layer, espe-

cially in themidlatitudes, which had the largest number of

samples in this group. The high ETH and large re-

flectivities above the melting layer are consistent with

strong convective vertical motions and are similar to the

median convective vertical profiles of midlatitude con-

vection illustrated in Carr et al. (2017). The larger Z

throughout the column and warm-layer Zdr values of

group 6 are consistent with a signature of ice-based con-

vection and melting below the 08C layer. The increasing

Zdr and Z toward the surface suggest continued co-

alescence growth below the melting layer (Kumjian and

Prat 2014).

To put these mean samples into a larger spatial con-

text, we examined time–height series for several cases in

each latitude band. The AMIE Gan and OLYMPEX

experiments both employed high-temporal-resolution

RHI scanning, so time–height series were created by

averaging 30 gates in range at each disdrometer gate for

each elevation over the disdrometer point. Time–height

series for IFloodS and Darwin used PPI data by aver-

aging 10 gates in the azimuthal direction and 30 gates in

range over the disdrometer location for each elevation,

similar to the quasi-vertical profile (QVP) method de-

scribed by Ryzhkov et al. (2016) but averaged over a

smaller area. Representative reflectivity time–height

series for each latitude band for different groups are

shown in Figs. 9–11.

An example from Darwin on 16 January illustrates a

region of stratiform precipitation followed by a con-

vective cell passing near the disdrometer at 1205 UTC

(Fig. 9a). The majority of the time series is classified as

group 4 by the disdrometer during clearly stratiform

precipitation, evidenced by a persistent bright band

around 5km. The passage of the convective core results

in a brief classification of group 1. A second tropical

example fromGan Island shows a widespread stratiform

region with a continuous bright band evident at the

environmental melting level (;5 km). As an embedded

convective element passes by around 0420–0450 UTC

(Fig. 9e), reflectivities are enhanced below the bright

band, and the group switches from 1 to 5 as PC2 values

increase (Fig. 9g). After this time, the PCA is ambiguous

before switching to group 6 as the heavy stratiform

TABLE 5. Mean m values for the six groups using the PC thresholds in Fig. 4.

Experiment All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Global 4.20 0.64 6.91 6.23 20.02 2.14 20.79

High 4.44 0.23 6.82 6.75 20.51 2.36 21.07

Mid 4.35 0.30 7.26 7.18 0.20 2.70 20.61

Low 3.70 0.99 6.48 4.61 20.36 2.08 21.20
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precipitation sets in (Fig. 9e) and finally groups 4 and 2 as

the stratiform echo weakens. This example is also illus-

trated in T15 and shows the transition from convective

(groups 1 and 5) to stratiform (groups 2 and 4) pre-

cipitation. The last tropical example, also fromGan Island,

shows what is termed ‘‘weak, shallow convection’’ by T15.

Reflectivities are largely below 25dBZ, and the echo top

remains below themelting layer in an area of weak echoes

(Fig. 9i). The disdrometer PCA shows small PC1 and

positive PC2, mostly classified as groups 2 and 3.

The first example from IFloodS, representing the

midlatitudes, shows the passage of an intense deep con-

vective core, with peak reflectivities . 50- and 40-dBZ

echoes reaching 10km, followed by a fledgling strat-

iform region (Fig. 10a). As the core passes over

the disdrometer, large PC1 values result in a group 1

FIG. 6. Two-dimensional distributions of each group in the (left) high-, (center) mid-, and (right) low-latitude bands for (a)–(c) logNw–D0,

(d)–(f)m–D0, and (g)–(i) logNw–m space. The gray dots encompass the entire space for each dataset and represent the points that did notmeet

PC thresholds (ambiguous); red is group 1, green is group 2, yellow is group 3, blue is group 4, orange is group 5, and purple is group 6.

Contours highlight smoothedGaussian 1-s points for each group. In (a)–(c), the solid black line is the T15 C-S separation line for the tropical

oceans and the dashed black line is the BR09 C-S separation.
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classification, followed by a narrow band of group 6 on

the back edge of the core, then group 4, and finally

group 2 as the stratiform precipitation sets in after 1015

UTC. The second IFloodS example (Fig. 10e) shows a

small, shallow convective cell passing around 1840

UTC, followed by a region of ‘‘lumpy stratiform’’

with a clear brightband signature but some enhanced

reflectivity above the bright band between 1855 and

1955 UTC. The small convective cell with echo heights

only reaching 6 km and reflectivities ;35 dBZ is asso-

ciated with a limited number of group 5 identifica-

tions. Group 4 is identified where the bright band has

strong reflectivities (.30 dBZ), and the most intense

bright band with reflectivities approaching 40 dBZ

is identified as group 6 and even some group 1.

As the stratiform weakens after 1955 UTC,

the disdrometer PCA identifies mostly group 2.

The last example also illustrates a period of lumpy

FIG. 7. As in Fig. 6, but for (a)–(c) LWC–D0, (d)–(f) Z–R, and (g)–(i) R–m space.
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stratiform, with a clear brightband signature but en-

hanced reflectivity aloft (Fig. 10i). Group 1 is identi-

fied early in the time period but switches to group 6 as

30-dBZ reflectivities reach 6–8km accompanied by

large reflectivities in the bright band (.45dBZ). As

the bright band and reflectivities aloft weaken, the

classification switches to group 4 and some group 2 (both

identifying stratiform precipitation).

The last examples illustrate the unique coastal mountain

high-latitude regime in OLYMPEX. Groups 1 and 6 are

identified during a period of strong low-level reflectivities,

upwardof 40dBZbelow3km, theapproximateheight of the

FIG. 8. Vertical structure of (a)–(c) reflectivity and (d)–(f) differential reflectivity Zdr for each of the six groups from coincident radar

RHIs for the (left) high-, (center) mid-, and (right) low-latitude bands. (g)–(i) The mean reflectivity at 2.5 km as a function of the mean

radar 0-dBZ echo-top height as a function of group determined by the surface disdrometer. Here, the low latitudes are composed from

Darwin andGan Island data; the midlatitudes from IFloodS,MC3E, and IPHEx data; and the high latitudes fromOLYMPEX radar data.

Note that the numbers composing each group indicated in the legends of (a)–(c) do not match those given in Table 6 because of the

ambiguous points, which are not shown. PC thresholds of s1.0 were used for this analysis.
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environmentalmelting layer during this time. In a2-km-deep

layer above themelting level, reflectivities are up to 35dBZ,

and echo tops are;8km (Fig. 11a). A contrasting example

(Fig. 11e) illustratingmostly group6and somegroup4 shows

shallower echo tops (around 6km) but similar strong re-

flectivities in the warm layer (below 2km in this case) and

some more intense periods with reflectivities above 45dBZ

(e.g., 1145 UTC). These intense periods are classified as

group 6. In contrast to the first OLYMPEX example, re-

flectivities fall off near the surface. As the reflectivity aloft

weakens after 1250 UTC, groups 4 and 2 are evident.

Finally, a period of weak, shallow reflectivity is illustrated by

the example inFig. 11i.Echo tops are lower in comparison to

the previous two cases (,4km), and reflectivities are limited

to ,30dBZ. The majority of these points are classified as

group 3, similar to the weak, shallow echoes accompanying

group 3 in the tropical example (Fig. 9g).

These specific examples serve to support our hypoth-

esis that group 1 encompasses convection, with stronger

reflectivities and deeper echoes (Figs. 9a,b, 10a, and 11a).

The hypothesized stratiform nature of group 2 is also

supported by these examples, as this group is generally

identified by the disdrometer when radar echoes display a

weak to moderate bright band and reflectivities remain

below 30dBZ (Figs. 9a, 10e, and 11i). Radar examples

support the hypothesis that group 3 is associated with

weak, shallow echoes (Figs. 9i, 11i), while group 4 appears

to be associated with more intense stratiform pre-

cipitation, where brightband reflectivities are .35dBZ

(Figs. 9a,e, 10e,i, and 11e). According to the radar anal-

ysis, group 5 appears when reflectivities in the warm layer

are significant (.30dBZ), suggesting the presence of

robust coalescence processes (Fig. 9e). Group 6 is gen-

erally associated with the most intense reflectivities,

sometimes on the edge of a convective core (Fig. 10a),

sometimes in strong, lumpy stratiform (Figs. 10e,i, and

11a,e), suggestive of larger melted ice particles.

4. Discussion and summary

We have presented an objective PCA-based frame-

work for examining the spatial and temporal variability

of DSDs and applied it to a large dataset spanning from

the deep tropics to the high latitudes. We used PCA to

examine comprehensive modes of variability between

quantities describing DSDs derived from disdrometers.

Importantly, the leading two EOFs revealed the same

covariance in all datasets (Fig. 3) despite differences in

breadth of individual DSD parameters (Fig. 2). Based

on the PCA analysis, six different groups of points with

similar DSD characteristics were designated. However,

the physical nature of these six DSD populations varied

as a function of latitude, indicating that the processes

contributing to the formation of each group may have

different underlying physics.

In the low latitudes, groups 1 and 2 (roughly associ-

ated with the positive and negative modes of EOF1,

respectively), showed surprising conformity to the pre-

viously identified convective–stratiform lines proposed

by BR09 and T15 (Figs. 6a–c). Group 1 is exclusively

associated with R . 10mmh21 at the prescribed s1.5

thresholds (Figs. 7d–f) and is characterized by significant

ETH and strong reflectivities above the melting layer

(Fig. 8), further supporting the convective nature of this

population (Tokay et al. 1999; Atlas et al. 2000; Yuter

and Houze 2002). The low latitudes have a pronounced

population of points with moderate mean drop sizes

(1.5–2mm) and large logNw (.4), whichmathematically

emerge from PCA as having both high PC1 and high

PC2 values (group 5), a feature that is suppressed in the

mid- and high latitudes. These points yield some of the

highest rain rates, have the highest drop concentrations,

exhibit high reflectivities in the warm layer (Figs. 9, 10),

and have ETH above the environmental melting level

but below groups 1 and 6 (Figs. 8g–i). We postulate this

characteristic DSD is associated with warm rain pro-

cesses and prolific collision–coalescence, where large

LWC and deep warm cloud depths facilitate collision–

coalescence growth. In low R (,10mmh21), many

previous studies have grappled with the difficulty in

separating convective and stratiform processes because

of the similarities and overlap in DSD parameters in 2D

space (Tokay and Short 1996; Yuter and Houze 1997).

This is evident in the overlap between groups 2 and 3

TABLE 6. Summary of the radar characteristics and disdrometer matches.

Project Radar

RHI

elevations

PPI elevations

(No., highest elevation)

Resample

time Disdrometer

Distance to

disdrometer

No. of

raining matches

OLYMPEX NPOL 08–458 — 20min APU03, APU05, APU08 19, 32, 40 km 3320

IFloodS NPOL 08–208 12, 58–88 2–5min SN36, SN37 25, 47 km 1112

IPHEx NPOL 08–608 — 2–5min SN35, SN36 22, 42 km 354

MC3E NPOL 08–408 28, 358 1–5min SN25, SN70 33, 28 km 1919

Gan SPOL 08–608 — 15min 2DVD 8 km 519

Darwin CPOL 08–458 17, 428 10min JWD 23 km 817
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FIG. 9. Time–height cross sections constructed from (a) C-band polarimetric

(CPOL) PPI data from Darwin and (e),(i) S-band polarimetric (SPOL) RHI data

from Gan Island. Radar reflectivity is color contoured in (a), (d), (e), (h), (i), and

(l), where (d), (h), and (l) represent a PPI at the time of the vertical line and the
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(Figs. 6, 7), which have similar ranges ofm andD0 values.

However, PCA allows for covariance in multiple di-

mensions, thereby providing a more robust separation

between groups 2 and 3 through differing Nw, LWC,

and Nt (Fig. 5b). Group 3 is associated with a large

population of points with very small median sizes but

numerous drops. Radar analysis revealed that the radar

echoes producing the surface DSD observations for

group 3 are shallow and weak in all three latitude lo-

cations. Perhaps in these cases, the physical depth of

the cloud is insufficient to support coalescence (Berry

and Reinhardt 1974; Cotton et al. 2010; Lau and

Wu 2003).

In the midlatitudes, a significant number of points are

associated with large D0 but low logNw, which fall into

groups 4 and 6. However, while group 4 has R and LWC

values that do not stray far from the global mean

of ;4mmh21 and 0.23 gm23, group 6 has comparably

large deviations of these quantities, indicating signifi-

cant LWC coupled with large drops (D0 up to 5mm).

This could indicate convective ice processes and/or

continued coalescence in the warm cloud within group 6.

Group 1 in the midlatitudes has a lower mean logNw and

highermeanD0 compared to the low latitudes (Tables 3–4),

consistent with the maritime and continental regimes

described byBR03. Radar analysis revealed largermean

reflectivities aloft and higher ETH, as well as very large

(1.5 dB) mean Zdr (Fig. 8).

The high latitudes are notable for the significant

population of points with small D0 (0.68mm), high

logNw (4.81), and high m (6.75; Tables 3–5). Many of

these points are captured by the variability distinguished

in group 3. It is clear that the T15 C-S separation line

developed for the tropical ocean is not applicable to the

high latitudes (nor was it intended to be), as it cuts di-

rectly through the highest density of points in logNw–D0

space in the high latitudes (Fig. 2c). Group 5 is notably

absent, while groups 1 and 6 are limited in logNw–D0

space, suggesting that there may be differences in the

microphysical processes shaping the surface DSD de-

spite sharing commonalities with the convective pop-

ulations in the mid- and low latitudes.

These DSD groupings have important implications

for estimating rain rates from radar, as they result in a

spectrum of Z–R relationships (Figs. 7d–f). Group 2 fea-

tures modest Z but the smallest R values, generally

,1mmh21 (at the s1.5 threshold). There is overlap with

group 3, which tends to have larger R and larger Z

because of the increased LWC and drop concentra-

tions. Interestingly, group 1 points are associated with

R . 10mmh21, a threshold considered to be exclusively

convective precipitation based on earlier studies (e.g., Atlas

et al. 2000; Yuter and Houze 2002). Most of the group 3

points have R , 10mmh21, although group 5 yields some

of the highest R values along with group 1. It is interesting

to note that group 3 spans a relatively narrow range ofZ–R

relationships, particularly in the tropics (Fig. 7f) and

similarly for group 5. On the contrary, group 1 does not

follow a distinctZ–R relationship but is associated with

both high Z and high R in all latitude bands. Groups 4

and 6 have much lower R for a givenZ compared to the

distributions of groups 3 and 5. Interestingly, there is

increased scatter between Z and R with increasing

latitude, and there is a larger fraction of ambiguous

points that do not meet the s1.5 threshold, particularly

for the light rain rates. It is possible that additional

modes of DSD variability may be explained by the

higher-order EOFs that are not described by the six

groups derived from EOF1 and EOF2. It is also pos-

sible that more data from high-latitude, light-rain-rate

conditions are needed in order to account for DSD

variability in this regime. Thus, our analysis reveals

important information about how the DSD variability

relates to radar-based rainfall retrievals.

To summarize our findings, we present a conceptual

model based on our group determination in Nw–D0

space (Fig. 12). Groups 1, 3, 5, and 6 are characterized

by convective precipitation processes, where particles

are assumed to grow as they are lifted by a convective

updraft then, after sufficient growth, fall back through

the updraft growing to even larger sizes. We note that

convection is a continuum, where group 5 represents

convection dominated by warm rain processes, such

as where warm cloud depths are especially deep,

 
disdrometer location denoted by a black dot. The reflectivity scale is the same as the

time–height, and the approximate scale of the PPI is given at the bottom. The start

times of the PPIs/RHIs used to construct the time–height cross sections are illus-

trated by hatch marks along x 5 0 in (a), (e), and (i). The disdrometer group

classifications are shown as colored dots along the time series. (b),(f),(j) For ref-

erence, the disdrometer points are shown in logNw–D0 space. Below the reflectivity

time–height in (a), (e), and (i) are (c),(g),(k) the PC values as a time series, with the

PC thresholds indicated by dashed horizontal lines. Note: for illustration purposes,

the PC s threshold has been lowered to s1.0.
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FIG. 10. As in Fig. 9, but time–height cross sections constructed from NASA po-

larimetric (NPOL) PPI data from IFloodS.
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FIG. 11. As in Fig. 9, but time–height cross sections constructed fromNPOLRHIdata

from OLYMPEX.
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supporting enhanced growth by collision and co-

alescence. Group 6 is dominated by ice-based convec-

tive precipitation, indicated by largeD0 and low logNw,

where strong vertical motions support robust mixed-

phase production of graupel and possibly hail, leading

to large raindrops at the surface owing to melting.

Group 1 has some components of ice-based and warm

rain growth processes. The progression from warm rain

to ice-based processes in the convective group also

follows the maritime/continental trends noted in pre-

vious studies (e.g., BR03; Ulbrich and Atlas 2007;

BR09; T15). Groups 1, 5, and 6 generally conform to

the C-S separation proposed by BR09 (Figs. 6a–c).

Group 3 is also convective in nature, with numerous but

small drops, shallow ETH, and generally weak re-

flectivities corresponding to warm rain showers. In the

tropics, this group is associated with weak convective

motions, but in a topographically forced location such

as OLYMPEX, this may be a signature of orographic

enhancement. Groups 2 and 4 are stratiform pre-

cipitation processes, with increasing D0 and decreasing

Nw being correlated with brightband intensity, repre-

senting an evolution from melted vapor-grown parti-

cles to aggregation and riming processes. The light rain

rates and small drop diameters associated with group 2,

as well as the vertical profile of Z and Zdr, indicate this

group is weak stratiform precipitation with small- to

modest-sized ice particles grown by vapor deposition

entering the melting layer leading to brightband re-

flectivities only reaching 20–25 dBZ. Group 4 has much

larger drop sizes but relatively low logNw (and also

comparatively low drop concentrations), accompanied

by a distinct radar-based signature of aggregation aloft,

especially in the IFloodS data. In this group, small ice

particles form aloft and undergo growth by deposition,

followed by aggregation. Distinct and sharp radar

bright bands (.30 dBZ) form as the aggregates begin

their initial stages of melting.

While the ultimate goal of this work was to link dif-

ferent global DSD modes to the physical processes

shaping them, we recognize this is a complex problem

with many different aspects including thermodynamic,

microphysical, and dynamical feedbacks. To truly un-

derstand the variability in each region and the multitude

of factors shaping the six DSD groups described herein

requires synergistic modeling and observational studies.

We have outlined a framework that allows for the sta-

tistical, objective separation of raining points by their

DSD characteristics in six-dimensional space and have

demonstrated that six distinct populations with similar

characteristics can be grouped around the globe. While

these populations vary in frequency and breadth across

latitudes, they have important implications for radar-

based rainfall retrieval and model assumptions sur-

rounding rain and DSDs. An important continuation of

the work will be to include environmental factors to

understand their role in DSD variability. We also ac-

knowledge the dataset may not have captured all rain

regimes, and therefore, datasets from underrepresented

locations (e.g., high-latitude oceans) should be consid-

ered in the future in order to more comprehensively

address regional DSD variability. Seasonal and diurnal

cycles of DSDs could also be examined from the mul-

tiyear datasets used in this study. Higher-order

EOFs could be examined to identify more modes of

variability.
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