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ABSTRACT: The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of
extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and
forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field
campaign, assimilating all-sky infrared (IR) radiances from the geostationaryHimawari-8 andGOES-16 satellites, and provid-
ing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimila-
tion has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared
with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to
at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating
observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced
the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the
counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine
short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future.

SIGNIFICANCE STATEMENT: During the summers of 2020/21, the PSUWRF-EnKF data assimilation and forecast
system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), as-
similating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather predic-
tion model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts
of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion,
real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation
of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting
large-scale environments and representing atmospheric uncertainties as well.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Short-range prediction;
Data assimilation; Ensembles

1. Introduction

Extreme rainfall and its associated hazards, such as flash
flooding and landslides, are impactful weather phenomena that
threaten human lives and properties worldwide. Improving the
short-term forecasts of extreme rainfall, i.e., quantitative precipi-
tation forecasts (QPFs) at 0–12-h forecast lead time, is therefore
crucial. However, our knowledge of the fundamental processes
that lead to extreme rainfall is incomplete and our ability to fore-
cast these events remains limited.

To improve our understanding of the dynamical, thermody-
namical, and microphysical processes associated with extreme
rainfall as well as their predictability, the Prediction of Rainfall

Extremes Campaign In the Pacific (PRECIP) was proposed
to take place in Taiwan and Japan from late May to early
August of 2020 as a collaborative effort across multiple uni-
versities and institutions internationally. The field phase of
PRECIP was designed to observe extreme rainfall events
ranging from local rainstorms, mei-yu fronts, to typhoons, in
the moisture-rich environment of the East Asian monsoon
region. Although the primary field phase of PRECIP was
postponed to 2022 due to the COVID-19 pandemic, some ac-
tivities were carried out during the same period of 2020 and
2021 summers in Taiwan and Japan as pilot studies; addition-
ally, the Preparatory Rockies Experiment for the Campaign
in the Pacific (“PRE”-CIP) was carried out from mid-July to
mid-August of 2021 in Colorado, United States, during the
North American monsoon season, providing datasets com-
plementary to those gathered in Taiwan and Japan. Here-
after, we will refer to experiments in East Asia during the
2020 and 2021 summers as PRECIP2020 and PRECIP2021,
and experiments in Colorado during the 2021 summer as
“PRE”-CIP2021.
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The holistic PRECIP field campaign was designed to have
both observational and modeling components. The modeling
component in the 2020 and 2021 summer seasons included
1) real-time convection-permitting deterministic forecasts using
the Model for Prediction Across Scales (MPAS; Skamarock et al.
2012) with a global variable-resolution domain that uses a 3-km
convection-permitting grid spacing in Taiwan and surrounding
area and a 15-km grid spacing elsewhere; and 2) real-time
convection-permitting ensemble forecasts using the Pennsylvania
State University (PSU) Weather Research and Forecasting
(WRF) ensemble Kalman filter (EnKF) regional data assimi-
lation and forecast system (the PSU WRF-EnKF system;
Zhang et al. 2009; Weng and Zhang 2012). The PSUWRF-EnKF
system was run in real time for PRECIP2020, PRECIP2021, and
“PRE”-CIP2021 in advance of the 2022 primary field campaign.
This study focuses on the 2020 and 2021 forecasts which were con-
ducted with limited field observations due to the COVID pan-
demic. The results from the 2022 observational field campaign
and associated modeling components will be reported in a future
study.

One of the highlights of the real-time PSU WRF-EnKF
forecasts for PRECIP is the assimilation of satellite all-sky
infrared (IR) brightness temperatures (BTs; used interchange-
ably with “radiance” hereafter) from the Advanced Himawari
Imager (AHI) onboard the Himawari-8 geostationary satellite
of Japan and the Advanced Baseline Imager (ABI) onboard
the GOES-16 geostationary satellite of the United States.
Improving QPF remains one of the biggest challenges of nu-
merical weather predictions (NWPs). Assimilations of Doppler
weather radar observations have been shown to improve short-
term QPF at 0–6-h forecast lead time (e.g., Xiao and Sun 2007;
Aksoy et al. 2010; Clark et al. 2012; Johnson et al. 2015; Surcel
et al. 2015; Yussouf et al. 2016; Schwartz et al. 2021). Compared
with Doppler weather radars that are mostly located inland and
can only observe the rainfall after precipitation hydrometeors
are formed, infrared sensors onboard geostationary satellites
can detect the formation of clouds before the formation of pre-
cipitation with relatively high spatiotemporal resolutions over
both ocean and land.

Currently, only clear-sky IR BTs are assimilated in opera-
tional NWP models at coarse resolutions (.10 km; Geer et al.
2018) due to the complexities associated with all-sky (i.e., clear-
sky and cloudy) IR BT assimilations (e.g., Geer and Bauer
2011). Geer et al. (2018) shows that the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Japan
Meteorological Agency (JMA), the National Centers for Envi-
ronmental Prediction (NCEP), the Met Office (United King-
dom), and Météo-France are assimilating clear-sky IR BTs
from the geostationary satellites into their global models, and
JMA and NCEP are developing the capability to assimilate all-
sky IR BTs for their global models. Aside from all-sky IR BTs
from geostationary satellites, operational NWP centers are
also actively developing the capability of assimilating all-sky
IR BTs from hyperspectral infrared sounders onboard low-
Earth-orbiting (LEO) satellites, which have much more
moisture-sensitive channels compared with the moisture-
sensitive IR image channels of AHI and ABI, as well as all-
sky microwave (MW) BTs from LEO satellites, which are

sensitive to different types of hydrometeors at different spectral
bands. However, the temporal resolutions of the LEO satellites
are relatively coarse, such that they are suitable for the 3–6-h
assimilation time windows of the global models, but they are
not able to capture the rapid development of the convective-to-
mesoscale rainfall systems. On the other hand, ground-based
Doppler weather radars have adequate spatiotemporal resolu-
tions to resolve convection, but their limited spatial coverage
prohibits their monitoring of rainfall systems far from land. Be-
sides, the blocking effects of topography, trees, and buildings
further limit ground-based radars’ ability to detect storms over
some regions. IR BTs from geostationary satellites can provide
continuous, seamless observations of rainfall systems with high
spatiotemporal resolutions.

There have been significant enhancements in our ability to
ingest all-sky IR BTs from geostationary satellites into convection-
permitting regional models using ensemble-based data assim-
ilation techniques (such as EnKF) in recent years. Numerous
studies utilizing convection-permitting models have already
shown that the assimilation of all-sky IR BTs can improve
predictions of tropical cyclones (TCs; F. Zhang et al. 2016,
2019; Honda et al. 2018a; Minamide and Zhang 2018; Minamide
et al. 2020; Hartman et al. 2021), severe thunderstorms (Y. Zhang
et al. 2018, 2019; Jones et al. 2020), and other convective systems
(Honda et al. 2018b; Otkin and Potthast 2019; Sawada et al. 2019;
Chan et al. 2020b). However, their potential impacts on
the short-term QPF (0–12-h) have not been systematically
explored using long-term and real-time data assimilation
experiments.

In this study, we show that all-sky IR BTs have the potential
to improve rainfall predictions in different regions through ad-
vanced ensemble-based data assimilation techniques. To the
best of our knowledge, the real-time operation of the PSU
WRF-EnKF system during PRECIP is the first time that a re-
gional, convection-permitting, ensemble-based data assimilation
and forecast system running in real-time has assimilated all-sky
IR BTs. This study does not aim at improving our capability to
assimilate all-sky IR BTs, but rather presents a systematic
evaluation of the potential of improving the short-term QPF
in real-time at both convective gray-zone and convection-
permitting resolutions. The rainfall associated with mei-yu/
baiu fronts in China, Korea, and Japan in the warm season
of 2020 is also above the climate average (e.g., Takaya et al.
2020), leading to devastating floods. This also provides a
good opportunity to evaluate the impacts of all-sky IR data
assimilation on the real-time forecasts of extreme rainfall.

2. Configurations of the real-time PSU
WRF-EnKF system

a. Configurations for PRECIP2020

The PSUWRF-EnKF system configured for the PRECIP ex-
periments combines the Advanced Research WRF (ARW/
WRF; Skamarock et al. 2019) model, version 4.2, the ensemble
square root filter (EnSRF; Houtekamer and Mitchell 2001) var-
iation of EnKF, and the Community Radiative Transfer Model
(CRTM; Han et al. 2006), version 2.3.0. For PRECIP2020, the
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system is configured with a 4503 4003 50 domain with a hori-
zontal grid spacing of 9 km, covering East Asia and part of the
western North Pacific, and a one-way nested 3-km domain of
300 3 300 3 50 grids covering Taiwan and adjacent regions
(Fig. 1a). The hybrid sigma-pressure vertical coordinate is used
to deal with the complex terrain over the Taiwan and Luzon is-
lands and the Indochinese Peninsula, and the highest model
level is located at 50 hPa. Employed physical parameterization
schemes include the aerosol-aware version of the Thompson mi-
crophysics scheme (Thompson and Eidhammer 2014), the re-
vised MM5Monin–Obukhov scheme for surface layer processes
(Jiménez et al. 2012), the Noah land surface model (Tewari et al.
2004), the YSU scheme for PBL processes (Hong et al. 2006),
and the RRTMG scheme for longwave and shortwave radia-
tions (Iacono et al. 2008). No cumulus scheme is applied in both
domains.

The PSU WRF-EnKF system uses 40 ensemble members,
which is a balance between available computational resources
and the need to reduce sampling errors and underdispersive
ensembles that result from limited ensemble members. Simi-
lar ensemble sizes of around 40 have been successfully used
for other studies assimilating all-sky IR BTs using EnKF at
convection-permitting resolutions (e.g., Otkin and Potthast
2019; Y. Zhang et al. 2018, 2019; Jones et al. 2020). The sys-
tem also uses adaptive observation error inflation (AOEI;
Minamide and Zhang 2017) and adaptive observation error
background inflation (ABEI; Minamide and Zhang 2018) to
treat the nonlinearities and non-Gaussianities associated with
the IR BTs, which have been proven to improve the assimila-
tion of all-sky IR BTs by numerous studies (e.g., F. Zhang
et al. 2019; Minamide and Zhang 2017, 2018, 2019; Y. Zhang
et al. 2018, 2019, 2021a; Minamide et al. 2020; Chan et al.
2020b; Minamide and Posselt 2021; Hartman et al. 2021). The
relaxation-to-prior-perturbation (RTPP; Zhang et al. 2004)
method is used to maintain ensemble spread and combines
80% of the prior perturbations and 20% of the posterior
perturbations.

The system was run in real time from 20 May to 10 August
2020 once daily for PRECIP2020 (83 days in total). Initial con-
ditions of the 40 ensemble members at 0000 UTC every day
were generated using the 20-member Global Ensemble Fore-
casting System (GEFS) analyses at 0000 UTC of the same day,
and 20-member 6-h GEFS forecasts from 1800 UTC of the

previous day valid also at 0000 UTC of the current day. Values
at GEFS grids are horizontally and vertically interpolated to
the WRF grids. After a spinup period of 3 h, hourly EnKF
cycling data assimilations were performed till 1200 UTC
(i.e., 10 data assimilation cycles in total). Assimilated obser-
vations including conventional surface, rawinsonde, and
commercial aircraft observations from the Global Telecom-
munication System (GTS) acquired through the Meteoro-
logical Assimilation Data Ingest System (MADIS) and
all-sky IR BTs from the 7.3-mm channel 10 (lower-tropospheric
water vapor channel) of Himawari-8’s AHI. The raw IR BTs
were thinned to a horizontal spacing of 0.28 (roughly 20 km) for
the outer domain and 0.048 (roughly 4 km) for the inner do-
main, and they were assimilated with no vertical localization
and horizontal radii of influence (ROI; in terms of cutoff dis-
tance where the observations’ impacts reduce to zero) of 100
and 40 km for the outer and inner domains. No additional qual-
ity control or bias correction procedures were performed fol-
lowing previous practices (F. Zhang et al. 2019; Minamide and
Zhang 2017, 2018, 2019; Y. Zhang et al. 2018, 2019, 2021a;
Minamide et al. 2020; Chan et al. 2020b; Minamide and Posselt
2021; Hartman et al. 2021) due to the inability for a regional
model to separate errors in model fields from systematic biases
associated with the parameterization schemes and the radiative
transfer model. After the final analysis at 1200 UTC of each
day, a 40-member 48-h ensemble forecast was carried out.

The daily 48-h ensemble forecasts described above will be re-
ferred to as the “RT2020” (“real-time 2020”) forecasts hereafter.
As a comparison, a parallel experiment following the same
manner as RT2020 but excluding IR BTs during cycling EnKF
was performed retrospectively after the field campaign, and its
ensemble forecasts will be referred to as the “NoIR2020” fore-
casts hereafter. Our purpose is to create “twin” forecasts that
only differ from the real-time forecasts by not assimilating all-
sky IR BTs, therefore the system configurations are kept identi-
cal. Due to limited extreme rainfall events near Taiwan during
the pilot study resulting from the unexpectedly calm western
North Pacific in 2020, as well as limited computational resour-
ces, the retrospective NoIR2020 experiment only uses the 9-km
outer domain for both the data assimilations and the ensemble
forecasts, and the verification of the RT2020 and NoIR2020
forecasts will be focused on the 9-km domain as well. Although
the 9-km grid spacing is unable to resolve isolated convective

FIG. 1. PSUWRF-EnKF domain configurations for (a) PRECIP2020, (b) PRECIP2021, and (c) “PRE”-CIP2021 experiments.
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cells, this model resolution can capture the primary characteris-
tics of mesoscale systems that contribute most monsoonal pre-
cipitation, and it has been widely used in simulating tropical
and monsoonal rainfall with adequate skill (e.g., Wang et al.
2015; Chen et al. 2018, 2021, 2022a; Chen and Zhang 2019; He
et al. 2019; Ou et al. 2020; Ruppert and Chen 2020). Limited by
computational resources, we also did not perform additional
retrospective experiments to compare the impact of clear-sky
versus all-sky IR BTs. Okamoto et al. (2019) showed that com-
pared with when only clear-sky IR BTs are assimilated, the as-
similation of all-sky IR BTs leads to reduced errors against
independent conventional observations and satellite retrievals
and improved rainfall forecasts.

b. Configurations for PRECIP2021 and “PRE”-CIP2021

Based on preliminary analyses performed after PRECIP2020,
several adjustments were made to the PSUWRF-EnKF system
for its PRECIP2021 and the “PRE”-CIP2021 (assimilating
channel-10 IR BTs fromGOES-16’s ABI, which has an identi-
cal 7.3-mm wavelength to channel 10 of Himawari-8’s AHI)
real-time runs. Unless otherwise noted, all the changed configu-
rations described below are applied to both the PRECIP2021
and the “PRE”-CIP2021 domains. The differences in the sys-
tem configurations are also summarized in Table 1.

The latest version 4.3 of ARW/WRF was used instead of
version 4.2. The domain configurations for PRECIP2021 were
adjusted (Fig. 1b) with the area covered by the 3-km
domain increased by 40% to 354 3 354 compared with the
PRECIP2020 configuration of 300 3 300 and the area covered
by the 9-km domain slightly decreased to 400 3 360 to com-
pensate the increased 3-km computational costs. The 9-km do-
main (400 3 320 3 50) of “PRE”-CIP2021 covers the western
2/3 of the contiguous United States (CONUS) and the 3-km
domain (390 3 330 3 50) covers Colorado and the surround-
ing area. While PRECIP2021 inherits the same set of physical
parameterization schemes from PRECIP2020, the “PRE”-
CIP2021 runs use a slightly different combination of parame-
terization schemes, including the Thompson et al. (2008)
microphysics, the Mellor–Yamada–Nakanishi–Niino (MYNN)

surface scheme (Nakanishi and Niino 2004), the RUC land
surface model (Benjamin et al. 2004), and the MYNN 2.5-level
TKE scheme for PBL processes (Nakanishi and Niino 2004).
These schemes are also used by the operational High-Resolution
Rapid Refresh (HRRR) model and are expected to provide sat-
isfactory performance for convection over CONUS at a 3-km
horizontal grid spacing.

One outstanding issue associated with the PRECIP2020
forecasts is that the ensemble forecasts are generally underdis-
persive (see section 4 for more details), which is also an issue
that has been frequently observed in regional ensemble pre-
diction systems (e.g., Schumacher and Clark 2014; Schwartz
et al. 2014; Hagelin et al. 2017). To combat the ensemble
underdispersiveness, we applied stochastic kinetic energy back-
scatter (SKEB; Mason and Thompson 1992) and stochastically
perturbed physics tendencies (SPPT; Buizza et al. 1999) schemes
for the PRECIP2021 and “PRE”-CIP2021 runs with different
random seeds assigned for each of the ensemble members, as
well as multiplicative covariance inflation of prior perturbations
for EnKF (Anderson andAnderson 1999) by increasing the mag-
nitudes of EnKF prior perturbations by 1% before assimilating
observations for all EnKF cycles. The impacts of applying these
additional methods are examined in section 4. The horizontal
ROI for the outer 9-km domain is also reduced from 100 to
40 km based on our recent study on the structure of correla-
tions between all-sky IR BTs and atmospheric states (Zhang
et al. 2021b, 2022a).

Additionally, preliminary quantitative verifications based on
the PRECIP2020 forecasts show that QPF is generally improved
out to 6–12 h when all-sky IR BTs are assimilated (see section 4
for more details). Therefore, for PRECIP2021 and “PRE”-
CIP2021, the size of the ensemble was reduced from 40 to 20 af-
ter the first 12 h, providing a combination of 40-member 12-h
ensemble forecasts and 20-member 48-h ensemble forecasts for
each run. Clark et al. (2011) and Schwartz et al. (2014, 2019)
showed that ensemble forecasts with 10–20 members can ade-
quately quantify the uncertainties associated with the forecasts.

The real-time data assimilation and forecast experiments
for PRECIP2021 (Taiwan) and “PRE”-CIP2021 (Colorado)

TABLE 1. Differences in the configurations of the PSU WRF-EnKF system during the PRECIP2020, PRECIP2021, and “PRE”-
CIP2021 experiments (see section 2b for details).

PRECIP2020 (Taiwan) PRECIP2021 (Taiwan) “PRE”-CIP2021 (Colorado)

WRF configuration
ARW-WRF version 4.2 4.3 4.3
9-km domain size 450 3 400 3 50 400 3 360 3 50 400 3 320 3 50
3-km domain size 300 3 300 3 50 354 3 354 3 50 390 3 330 3 50
Microphysics Thompson aerosol Thompson aerosol Thompson
Surface Monin–Obukhov Monin–Obukhov MYNN
Land surface model Noah Noah RUC
PBL YSU YSU MYNN 2.5
SKEB and SPPT No Yes Yes
Forecast length 40-member 48-h 40-member 12-h and 20-member 48-h 40-member 12-h and 20-member 48-h

EnKF configuration
Satellite and sensor Himawari-8 AHI Himawari-8 AHI GOES-16 ABI
9-km-domain BT ROI 100 km 40 km 40 km
Multiplicative inflation No 1% 1%
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will be referred to as RT2021TW and RT2021CO, respec-
tively. To facilitate similar verifications on the impact of as-
similating all-sky IR BTs, we also performed retrospective
“NoIR2021CO” runs. Different from the NoIR2020 runs, the
NoIR2021CO runs implemented both domains of RT2021CO
to properly resolve the circulations of localized convective storms
that are frequently observed during the “PRE”-CIP2021 period
in the United States, and for “PRE”-CIP2021 we will only evalu-
ate the 3-km forecasts. Since NoIR2020 can be used to evaluate
the potential impacts of all-sky IR on the rainfall forecast during
the East Asian summer monsoon, we decided not to perform
NoIR2021TW due to limited computational resources, and
RT2021TW will not be evaluated in this current study. Both
RT2021CO and NoIR2021CO were initialized twice daily at
0000 and 1200 UTC from 15 July to 15 August 2021 (33 days
and 66 forecasts in total). Combined with RT2020 and
NoIR2020 from PRECIP2020, they will provide more com-
prehensive evaluations on the impacts of assimilating all-sky
IR BTs with two different regions at two different years.

3. Verification metrics

Two datasets are used to evaluate the impact of assimilating
all-sky IR BTs on QPF. For the 9-km PRECIP2020 forecasts
of RT2020 and NoIR2020, we use the 0.18 3 0.18 Integrated
Multi-satellitE Retrievals for GPM (IMERG; Huffman et al.
2019) rainfall estimates produced by the Global Precipitation
Measurement (GPM) project that combines multiple micro-
wave sensors from the GPM constellation satellites, as well as
all-sky infrared radiances and surface rain gauges. Although
certain deficiencies exist (e.g., Lee et al. 2019; Chen et al.
2022b), IMERG is one the most reliable estimations of global
precipitation with high spatiotemporal resolutions and seam-
less coverage over both land and sea. For the 3-km “PRE”-
CIP2021 forecasts of RT2021CO and NoIR2021CO, we use
the Stage-IV rainfall estimates (Lin and Mitchell 2005), which
have a 4-km grid spacing and are generated by the NCEP’s
Environmental Modeling Center (EMC) using ground-based
radars and rain gauges. In addition to QPF verifications, ra-
winsonde observations from the MADIS are used to evaluate
the forecasts of large-scale environments. Due to the require-
ment of the workflow of the real-time system, no rawinsonde
observations are assimilated for the last EnKF cycles (at 0000
or 1200 UTC) because these observations came in much later
than the time required to provide the ensemble forecasts, there-
fore the ensemble forecasts at 0-h forecast lead time (identical
to the analysis of the last EnKF cycle at 0000 or 1200 UTC) are
independent of verified rawinsondes. The WRF outputs are in-
terpolated to the IMERG or Stage-IV grid and rawinsonde lo-
cations using linear interpolation.

The primary focus of this study is QPF, which is evaluated
using the equitable threat score (ETS; Wilks 2011), the area
under the receiver operating characteristic (ROC) curve
(AUC; Marzban 2004), and the fraction skill score (FSS;
Roberts and Lean 2008). Information from the entire en-
semble is used in the calculations of all three metrics.

ETS is a pointwise, deterministic metric, with higher scores
representing more accurate forecasts. Using a 2 3 2 contingency

table that determines the hits, misses, and false alarms of a deter-
ministic forecast compared with the observations, ETS is formu-
lated as

ETS 5
hits 2 hitsrandom

hits 1 misses 1 false alarms 2 hitsrandom
,

where hitsrandom 5 (hits 1 misses) 3 (hits 1 false alarms)/
total events represents the reference value of hits for a
completely random forecast. To include the information from
the entire ensemble, the probability-matched mean (PMM;
Ebert 2001) is used to calculate ETS instead of the arithmetic
mean. The PMM preserves the cumulative distribution function
(CDF) of rainfall of the entire ensemble while keeping the hori-
zontal structure of the ensemble arithmetic mean at the same
time, and the arithmetic mean is not able to present the extreme
values of the entire ensemble.

AUC is a pointwise, probabilistic metric evaluating the
resolution of the forecasts on the occurrence of events ex-
ceeding a certain threshold, with higher scores representing
better discriminations between events and nonevents. A 2 3 2
contingency table is first generated considering whether the
forecast probability of a certain rainfall amount exceeds a cer-
tain probability threshold; this is different from the contin-
gency table for ETS, which considers whether a deterministic
forecast exceeds a certain rainfall threshold. Then, the ROC
curve is generated by plotting the probability of detection,
hits/(hits 1 misses), against the probability of false detection,
false alarms/(correct negatives 1 false alarms), for a set of
probability thresholds ranging from 0 to 1 using the forecast
probability contingency table. Last, AUC is calculated based
on the ROC curve using the trapezoidal approximation.

FSS is a neighborhood, probabilistic metric based on neigh-
borhood ensemble probability (NEP; Schwartz and Sobash
2017), with higher scores representing more accurate rainfall
forecasts at a certain neighborhood radius (also called the
horizontal or spatial scale of a given FSS calculation). NEPs
at each grid point given a certain rainfall threshold and a cer-
tain neighborhood radius (spatial scale) for the forecasts and
the corresponding neighborhood probability (NP; Schwartz
and Sobash 2017) of the observations are first calculated, then
FSS for a certain combination of rainfall threshold and neigh-
borhood radius is formulated as

FSS 5 1 2

∑
N

i51
(NEP f

i 2 NPo
i )2

∑
N

i51
[(NEP f

i )2 1 (NPo
i )2]

,

whereNEP f
i and NPo

i represents NEP of the forecasts and NP
of the observations at the ith of the total N grid points. A
smaller difference between NEP and NP results in a higher FSS
value. When a larger neighborhood radius is used, it is more
likely for the NEPs of the forecasts and the observations to
overlap, therefore FSS often increases with increasing neigh-
borhood radius when the rainfall threshold is fixed.

When calculating ETS, AUC, and FSS, we adopted percen-
tile thresholds that vary with time instead of fixed physical
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thresholds. The percentile thresholds can help correct some
model biases and facilitate verifications that focus on the fore-
cast skills of spatial patterns of given rainfall occurrence fre-
quencies (Dey et al. 2014; Gowan et al. 2018; Schwartz 2019).
For each day’s forecasts at each forecast lead time, the physical
thresholds are established by calculating the 95th, 97th, 99th,
99.5th, and 99.9th percentiles of the rainfall values produced by
the entire ensemble, and ETS, AUC, and FSS are calculated
against physical thresholds that are similarly established for the
IMERG and Stage-IV estimates that cover the same region of
the verified model domain. For ETS, because PMM preserves
the rainfall CDF of the entire ensemble, the physical values of
PMM’s percentiles are identical to those of the entire ensemble.

Environmental conditions are evaluated using root-mean-
square errors (RMSEs) and ensemble standard deviations
(STDs). RMSEs are verified against rawinsonde observations,
and STDs are calculated against the ensemble mean. Smaller
RMSEs indicate smaller errors, while STDs that are compara-
ble to the corresponding RMSEs}neither too large nor too
small}suggest that the ensemble spread adequately repre-
sents the uncertainty of the atmosphere.

We use the Wilcoxon signed rank test (Wilks 2011) for the
statistical significance test, which does not assume any specific
form of the distributions. For each rainfall threshold and/or
forecast lead time, we first calculate the differences between
the abovementioned metrics obtained using RT forecasts
and NoIR forecasts (we focus more on the one-on-one paired
differences between these two forecasts, rather than the differ-
ences between their overall distributions), then we apply the
Wilcoxon signed rank test to the collected differences
(with sample sizes of 83 for PRECIP2020, i.e., RT2020 and
NoIR2020, and 66 for “PRE”-CIP2021, i.e., RT2021CO
and NoIR2021CO) to examine whether these differences
are statistically significantly greater or smaller than 0. All
statistical significance tests are performed for the 95% and
99% confidence levels.

Due to the significant computational costs to run CRTM
and limited storage space that requires the outputs of the en-
semble forecasts to be postprocessed shortly after they are
generated to keep only the most essential model fields, no sys-
tematic verifications of simulated IR BTs against AHI or ABI
observations are performed.

FIG. 2. Distributions of physical thresholds with respect to forecast lead times at the (a) 95th, (b) 97th, (c) 99th, (d) 99.5th, and
(e) 99.9th percentiles over (left) the entire domain, (center) the land region, and (right) the sea region. Solid lines are the mean
values of the observations or the forecasts. Shadings mark the range of one standard deviation. Values from the entire ensemble
are used for the forecasts.
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4. PRECIP2020 verification

We first present the evaluations of the forecasts during the
PRECIP2020 experiments in the East Asia and western North
Pacific region, namely, RT2020 and NoIR2020 forecasts. All
the results in this section are obtained using the forecasts
from the 9-km outer domain.

Figure 2 shows the distributions of physical thresholds at
different percentiles with respect to forecast lead times for the
RT2020 and NoIR2020 forecasts and the IMERG estimates.
The mean values of the physical thresholds of RT2020 and
NoIR2020 are comparable with those of IMERG at the
95th percentile (Fig. 2a1), but they become higher than the
IMERG’s physical values when moving toward higher percen-
tiles, suggesting a slight overprediction of rainfall at these per-
centiles (Figs. 2b1–e1). An outstanding characteristic is the
offset of the diurnal cycles in the forecasts’ physical thresholds
compared with those from IMERG. If we divide the model
domain into the land region and the sea region, calculate the
physical thresholds of the percentiles within each region,
and compare the temporal evolutions of the forecasts’ phys-
ical thresholds at these two regions with the corresponding
IMERG thresholds at these two regions, it is apparent that
the forecasts generally have a good match with IMERG
(both diurnal cycles and magnitudes of the thresholds) at
the sea region (Figs. 2a3–e3), while notable discrepancies
occur at the land region (Figs. 2a2–e2). At the land region, the
18–24- and 42–48-h forecast diurnal peaks correspond to the
local afternoon of 0600–1200 UTC (for Taiwan, local time 5

UTC 1 8 h), while the 6–12- and 30–36-h IMERG diurnal
peaks correspond to the local late night to the early morning
of 1800–0000 UTC. This late night to early morning rainfall

peak is frequently observed in the coastal regions of East Asia
(Chen et al. 2009; Xu and Zipser 2011). It is often associated
with land–sea breezes, low-level/boundary layer jets, and their
interactions (Chen et al. 2016; Du and Rotunno 2018; Du and
Chen 2019), and the numerical models nowadays still lack
sufficient skills in simulating these mechanisms even with
convection-permitting grid spacings, resulting in unsatisfactory
skills in forecasting late night to early morning rainfall (e.g.,
Huang et al. 2022; Lu et al. 2022). The necessary horizontal and
vertical resolution to accurately capture this late-night to early-
morning rainfall peak in East Asian coastal regions still deserves
further studies.

Using percentile thresholds can partly mitigate these sys-
tematic model biases. RT2020 forecasts show generally higher
ETSs than NoIR2020 forecasts for the first 24 h, although their
differences diminish with the increasing forecast lead time or the
increasing percentile threshold (Fig. 3a). These improvements
are significant at the 99% confidence level for all percentiles ex-
cept for the 99.9th percentile at the first 6 h, and significant at
least at the 95% confidence level except for the 95th percentile
at 6–12 h (Fig. 3a). The improvements last slightly longer at the
land region (improvements significant at the 99% confidence
level for percentiles up to the 99th for 6–12 h; Fig. 3b) than
the sea region (mostly improvements are only significant for
0–6 h; Fig. 3c). Additionally, RT2020s AUCs are higher
than those of NoIR2020 and are significant for most percen-
tile thresholds for 0–12 h; the significance also extends to 48 h
for the 95th and 97th percentiles (Figs. 3d–f). This suggests that
the RT2020 forecasts better discriminate the rainfall occurrence
than the NoIR2020 forecasts, and the improvements can be fur-
ther extended with additional calibrations and bias corrections

FIG. 3. (a)–(c) ETS of the PMM and (d)–(f) AUC for the PRECIP2020 experiments over (left) the entire domain, (center) the land
region, and (right) the sea region. Solid and dashed lines represent scores of RT2020 and NoIR2020, respectively. Open circles and filled
circles indicate that the differences between the two experiments’ scores are statistically significant at the 95% and 99% confidence levels,
respectively.
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(although percentile thresholds already serve as crude bias cor-
rection processes).

As previously explained, ETS and AUC are both pointwise
metrics. Neighborhood verifications using FSS suggest that the
assimilation of all-sky IR BTs improves short-term rainfall fore-
casts at both small and large spatial scales (neighborhood radii)
too: similar to ETS and AUC, RT2020s FSSs are higher than
those of NoIR2020 for 0–6-h rainfall forecasts for all percentile
thresholds at all horizontal scales from 20 to 200 km, regardless
of whether it is over the land region or the sea region (Fig. 4).
Almost all these multiscale improvements at 0–6-h lead time are
significant at the 99% confidence level (only a few at 95% level).

Besides improved rainfall forecasts, RT2020 forecasts also
represent the environments and their uncertainties better than
the NoIR2020 forecasts. Statistically significant reductions in
RMSEs (at the 99% confidence level) occur for temperature
and dewpoint (Figs. 5a,b) in the RT2020 forecasts compared
with the NoIR2020 forecasts. For the wind fields (Figs. 5c,d), it
is noted that the error at 0-h forecast lead time (i.e., final EnKF
analysis) is statistically significantly increased for U wind in the
RT2020 forecasts (Fig. 5c). Some recent studies also suggest
that assimilating all-sky IR BTs might slightly degrade large-
scale circulations in the analysis (Hartman et al. 2023). How-
ever, RT2020s RMSEs of wind fields become statistically

FIG. 4. FSS for the PRECIP2020 experiments with a neighborhood radius of (a) 20, (b) 50, (c) 100, and (d) 200 km over (left) the entire
domain, (center) the land region, and (right) the sea region. Solid and dashed lines represent scores of RT2020 and NoIR2020, respec-
tively. Open circles and filled circles indicate that the differences between the two experiments’ scores are statistically significant at the
95% and 99% confidence levels, respectively.
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significantly lower than NoIR2020 beyond 12 h (at the 99% con-
fidence level). This improvement of the environments spanning
the entire 48-h forecast period also extends across the entire tro-
posphere (Figs. 6a–d). Consistent with the overall average
shown in Fig. 5, at 0 h, the RT2020s RMSEs in temperature and
V wind component are generally mixed with improvements and
degradations compared with NoIR2020s RMSEs, while for the
U wind component RT2020s RMSEs are generally higher than
those of NoIR2020. However, RT2020s RMSEs become over-
whelmingly lower than those of NoIR2020 beyond 12 h across
the entire troposphere with only occasional degradations. This
suggests that although the improvements to rainfall forecasts re-
sulting from assimilating all-sky IR BTs are generally limited to
the first 6–12 h, the improvements to the environments last
longer.

RT2020 forecasts also provide statistically significant en-
hancement in ensemble STDs (at the 99% confidence level)
compared with the NoIR2020 forecasts (Figs. 5a–d), except for
the dewpoint which is only significant at 0 h. The greater STDs
in RT2020 forecasts also extend throughout the entire tropo-
sphere (Figs. 6e–h), except for a reduction in STDs at the upper
troposphere for dewpoint (Fig. 6f). Although the algorithms of

EnSRF make the ensemble spread smaller when more observa-
tions are assimilated, RT2020 forecasts have stronger and more
active updrafts and downdrafts compared with NoIR2020
(figure not shown), and the enhanced deep convective activ-
ities in RT2020 forecasts can lead to their greater ensemble
spread. When comparing STDs with RMSEs, STDs of both
RT2020 and NoIR2020 forecasts are smaller than their cor-
responding RMSEs, suggesting that the ensemble forecasts
are underdispersive, which is an issue commonly observed in en-
semble forecasts using a regional model (e.g., Schumacher and
Clark 2014; Schwartz et al. 2014; Hagelin et al. 2017). Nonethe-
less, due to the smaller RMSEs and larger STDs in the RT2020
forecasts, it is less underdispersive than the NoIR2020 forecasts.
This indicates that the RT2020 forecasts better capture the un-
certainty of the atmospheric states than the NoIR forecasts.

As mentioned in section 2, we added SKEP, SPPT, and
multiplicative covariance inflation in the real-time forecasts of
PRECIP2021 to combat the underdispersive ensemble forecasts.
Although RT2021TW forecasts show notably larger STDs than
RT2020 forecasts (figure not shown), this is not a fair compari-
son because the synoptic activities in these two years are dif-
ferent from a climate perspective. Therefore, for 6 days of

FIG. 5. Comparisons of RMSEs and STDs for (a),(e) T, (b),(f) Td, (c),(g) U, and (d),(h) V between (top) the RT2020 and NoIR2020
forecasts, and (bottom) the RT2020-Inflate and corresponding RT2020 forecasts that cover the same period. Open circles and filled circles
indicate that the differences between the two experiments’ scores are statistically significant at the 95% and 99% confidence levels,
respectively.
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4–9 July 2020 when Kyushu, Japan, was hit by devastating
heavy rainfall, we rerun the RT2020 forecasts with SKEB,
SPPT, and multiplicative covariance inflation (referred to as
“RT2020-Inflate” hereafter; only 9-km domain is used so
that the results are consistent with the rest of this section).
Figures 5e–h and 7 show the changes in RT2020-Inflate’s
RMSEs and STDs relative to those from RT2020 that cover
the same period. It is apparent that applying these methods
leads to overwhelming STD increases throughout the entire
48-h forecast periods (Figs. 5e–h) and this behavior persis-
tently occurs for all 6 days of forecasts, except for occasional
STD decreases beyond 36 h in dewpoint temperature (Figs. 5f
and 7f) and one forecast in V wind component (Fig. 7h). In
the meantime, RMSEs of RT2020-Inflate are also slightly
lower than those of RT2020 at 0-h forecast (i.e., final EnKF
analysis), although for forecast beyond 12 h they present no
difference (Figs. 5e–h and 7a–d). The persistent STD increases
at all variables in almost all forecast days in this short-period
sensitivity test suggest that these methods helped to maintain
a more reasonable ensemble spread as expected. Given the for-
mulation of EnKF that the analysis will be closer to the observa-
tions with greater background ensemble spread, the reduced

RMSEs are also not surprising, even though the observations
used for verifications are not assimilated.

5. “PRE”-CIP2021 verifications

This section presents the evaluations of the forecasts dur-
ing the “PRE”-CIP2021 experiments in Colorado, namely,
RT2021CO and NoIR2021CO. All the results in this section
are obtained using the forecasts from the 3-km, convection-
permitting inner domain. Since most improvements in rainfall
forecast appear during the first 12 h, we have also provided a
different version of Figs. 8–11 with the first 12 h stretched in
the online supplemental material as Figs. S1–S4.

Figure 8 shows the distributions of the percentile thresholds’
physical values for the “PRE”-CIP2021 experiments, as well as
the values established separately for the 0000 and 1200 UTC
forecasts. Overall, the physical values of the forecasts are in
good agreement with those from Stage-IV. NoIR2021CO tends
to produce more rainfall for the first 12 h compared with
Stage-IV, but this overprediction is partly mitigated in
RT2021CO. The onset of diurnal rainfall in RT2021CO
and NoIR2021CO also tends to be slightly later (;1 h) than

FIG. 6. Vertical distribution of relative changes (in percentage) of (top) RMSEs and (bottom) STDs of the RT2020 forecasts with respect
to the NoIR2020 forecasts for (a),(e) T, (b),(f) Td, (c),(g) U, and (d),(h) V.
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that in Stage-IV at the 95th and 97th percentiles (Figs. 8a,b), but
this delay disappears at higher percentile thresholds. Figure 8 also
shows that occasionally some percentile’s mean values, or even
the upper quartile values, become zero. This is because very little
rainfall is observed or predicted in the 3-km domain, particularly
in the late night to morning hours (12–18- and 36–42-h lead times
for the 0000 UTC forecasts, and 0–6- and 24–30-h lead times for
the 1200 UTC forecasts). Therefore, we calculated the number of
days that a certain percentile threshold becomes zero, and they
are shown in Fig. 9. Note that there are 33 forecasts for both the
0000 and 1200 UTC forecasts. Therefore, when the number of
zero-value threshold days for a given percentile at a given forecast
lead time reaches 33, there is no forecast within the entire
“PRE”-CIP2021 period that this given percentile exceeds 0 mm
at this forecast lead time. We can see a steady increase in the
number of zero-value threshold days for all percentiles, start-
ing from the early night and peaking around noon, both in
the observations (Figs. 9a,b) and in the forecasts (Figs. 9c–f).
The forecasts have fewer zero-value threshold days than the
observations. Nonetheless, if a certain percentile threshold
equals zero at a certain forecast lead time either in the obser-
vations or in the forecasts, this forecast at this particular time
must be excluded in ETS, AUC, and FSS calculations, be-
cause a physical value of zero no longer represents the corre-
sponding percentile threshold. This will lead to a much smaller
sample size}or even complete removal of all forecasts}at
certain times.

Figure 10 shows the ETSs and AUCs for all forecasts
from the “PRE”-CIP2021 experiment, as well as calculated
separately for the 0000 and 1200 UTC forecasts using

their percentiles. Consistent with evaluations in section 4 for
PRECIP2020, RT2021CO forecasts have higher ETS than
NoIR2021CO for the first 6–8 h, with the first 2–4 h achieving
at least the 95% confidence level of statistical significance
(Fig. 10a). If we examine only the 0000 UTC forecasts, there
are consistent 0–4-h statistically significant improvements in
ETS except for the 99.9th percentile (Fig. 10b). For the 1200 UTC
forecasts, the sample sizes at the beginning of the forecasts
are too small (Fig. 9b), making the improvements in
RT2021CO compared with NoIR2021CO in the first 2–3 h
unreliable (Fig. 10c). For AUC, RT2021CO forecasts are
generally higher for the first 6–18 h (Fig. 10d). If we exam-
ine only the 0000 UTC forecasts, RT2021CO’s AUCs show
statistically significant improvements at the 95%–99% confi-
dence levels for the first 4–6 h compared with NoIR2021CO’s
AUCs (Fig. 10e), suggesting that we can further improve the
performance of RT2021CO forecasts with adequate calibra-
tions and bias corrections.

The FSSs for the “PRE”-CIP2021 experiment in Fig. 11
generally show characteristics that are consistent with ETSs
and AUCs. When all forecasts are aggregated together,
RT2021CO forecasts show significantly higher FSSs than
NoIR2021CO forecasts for the first 3–6 h (Figs. 11a1–d1),
depending on the percentile and the spatial scale (neighbor-
hood radius). If we only consider the 0000 UTC forecasts,
RT2021CO forecasts significantly outperform NoIR2021CO
forecasts for the first 4–6 h, with the majority of the statisti-
cal significance tests exceeding the 99% confidence level
(Figs. 11a2–d2). RT2021CO’s 1200 UTC forecasts also
show slightly higher FSSs for the first 2–3 h than those in

FIG. 7. Day-by-day relative changes (in percentage) of (top) RMSEs and (bottom) STDs of the RT2020-Inflate forecasts with respect to the
RT2020 forecasts that cover the same period for (a),(e) T, (b),(f) Td, (c),(g)U, and (d),(h) V.
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NoIR2021CO (Figs. 11a3–d3), but the sample size is too
small to draw any conclusions.

The number of rawinsonde stations within the 3-km
“PRE”-CIP2021 domain is much smaller than that within the
9-km PRECIP2020 domain (8 versus 70–80). There are also
very few observations available below 900 hPa considering
the topography of this domain, therefore RT2021CO and
NoIR2021CO’s differences in RMSEs and STDs below 900 hPa
should be examined with caution. In general, RT2021CO’s
RMSEs are slightly lower than those of NoIR2021CO, al-
though these differences are only occasionally statistically
significant at the 95% or 99% confidence levels (Fig. 12). Tem-
perature and dewpoint generally exhibit slightly reduced
RMSEs in RT2021CO compared with NoIR2021CO across
the whole troposphere (Figs. 13a,b), while for U and V wind
components the RMSE changes are more mixed (Figs. 13c,d).
On the other hand, we still see overall significantly increased
STDs in RT2021CO compared with NoIR2021CO throughout
the entire 48-h forecast period (Fig. 12) and the entire tropo-
sphere (Figs. 13e–h), with the only exception being dewpoint
at 0 h (final EnKF analysis; Fig. 12b) primarily at the upper
troposphere (Fig. 13f). This slight reduction of dewpoint STDs
at the final EnKF analysis at the upper troposphere when

all-sky IR BTs are assimilated is also observed in the verifica-
tions for PRECIP2020 (Fig. 6f) and the reason deserves fur-
ther studies.

6. Conclusions

During the summers of 2020 and 2021, the PSU WRF-EnKF
data assimilation and forecast system was run in real-time in
support of the Prediction of Rainfall Extremes Campaign In
the Pacific (PRECIP), assimilating all-sky infrared radiances
from the Himawari-8 geostationary satellite of Japan and
the GOES-16 satellite of the United States, and provided
ensemble forecasts every day for weather briefing and dis-
cussions of the field campaign. By comparing with retro-
spective forecasts excluding all-sky infrared radiances in the
EnKF data assimilation cycles, this study presents the first
systematic evaluation of the impact of assimilating all-sky
infrared radiances for the quantitative precipitation fore-
casts (QPF) using real-time ensemble forecasts over several
seasons at different regions.

Pointwise metrics of equitable threat score (ETS) and area
under the receiver operating characteristic (ROC) curve
(AUC) as well as neighborhood metric of fraction skill score

FIG. 8. As in Fig. 2, but for the “PRE”-CIP2021 experiments containing (left) all forecasts, (center) only 0000 UTC forecasts, and
(right) only 1200 UTC forecasts.
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(FSS) indicate that the rainfall forecasts are improved for at
least 4–6-h lead time when all-sky infrared radiances are assimi-
lated for different rainfall percentile thresholds and spatial
scales (neighborhood radii). The 2020 summer forecasts in East
Asia and west Pacific also show 6–12-h QPF improvements for

some thresholds. This time scale of 6–12 h of rainfall fore-
cast improvements is similar to what can be achieved with
the assimilation of observations from Doppler weather ra-
dars (e.g., Xiao and Sun 2007; Aksoy et al. 2010; Clark et al.
2012; Johnson et al. 2015; Surcel et al. 2015; Yussouf et al. 2016;

FIG. 9. Number of days that the physical value of a given percentile threshold equals zero for (a),(b) Stage-IV esti-
mates, (c),(d) RT2021CO forecasts, and (e),(f) NoIR2021CO containing (left) only the 0000 UTC forecasts, and (right)
only the 1200 UTC forecasts.

FIG. 10. As in Fig. 3, but for the “PRE”-CIP2021 experiments containing (left) all forecasts, (center) only 0000 UTC forecasts, and
(right) only 1200 UTC forecasts.
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Schwartz et al. 2021), and also likely governed by the limited
predictability of convective-to-mesoscale systems (e.g., Y. Zhang
et al. 2016, 2022b). The large-scale environments are also im-
proved when all-sky infrared radiances are assimilated, verified
against available, independent rawinsonde observations that the
RMSEs are generally reduced throughout the entire 48-h fore-
cast period. Furthermore, the ensemble forecasts from EnKF
analyses assimilating all-sky infrared radiances contain larger en-
semble spreads than when these observations are not assimi-
lated, leading to a better balance between ensemble variance
and error and a better representation of the uncertainty of the
atmospheric states. The increased ensemble spread extends

throughout the entire troposphere and lasts till the end of the
48-h forecast period. SKEB, SPPT, and multiplicative covari-
ance inflation also help to effectively increase and persistently
maintain a more reasonable ensemble spread.

One notable difference when comparing the performance of
the PSUWRF-EnKF system during the two years is the smaller
and shorter-lasting improvements of assimilating all-sky IR BTs
in CONUS (the “PRE”-CIP2021 experiments) when compared
with the East Asia and west Pacific (the PRECIP2020 experi-
ments) forecasts. The “PRE”-CIP2021 experiments captured
primarily diurnally driven local convective storms as revealed
by the apparent diurnal cycle in their percentile thresholds.

FIG. 11. FSS for the “PRE”-CIP2020 experiments with a neighborhood radius of (a) 10, (b) 20, (c) 50, and (d) 100 km for (left) all fore-
casts, (center) only 0000 UTC forecasts, and (right) only 1200 UTC forecasts. Solid and dashed lines represent scores of RT2021CO and
NoIR2021CO, respectively. Open circles and filled circles indicate that the differences between the two experiments’ scores are statistically
significant at the 95% and 99% confidence levels, respectively.
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These convective storms intrinsically have shorter predictabil-
ity than convection embedded within large-scale mei-yu/baiu
fronts that were captured by the PRECIP2020 experiments.
The dense surface observations in CONUS might also have

contributed to the less impact of assimilating all-sky IR BTs in
the “PRE”-CIP2021 experiments by preconditioning the envi-
ronment better than the PRECIP2020. Additionally, we did
not assimilate other space-borne observations in our system’s

FIG. 12. Comparisons of RMSEs and STDs for (a) T, (b) Td, (c) U, and (d) V between the RT2021CO and NoIR2021CO forecasts.
Open circles and filled circles indicate that the differences between the two experiments’ scores are statistically significant at the 95% and
99% confidence levels, respectively.

FIG. 13. As in Fig. 6, but for the “PRE”-CIP2021 experiments.
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real-time forecasts, such as infrared sounder radiances, all-sky
microwave radiances, and derived atmospheric motion vectors
(AMVs). Although none of these observations}except for re-
cently developed high-temporal-resolution AMVs (e.g., Zhao
et al. 2021)}have the adequate temporal resolution to ob-
serve the fast-evolving convective phenomena, the impact of
assimilating all-sky IR BTs from geostationary satellites on
QPF might be diluted when other space-borne observations
are also assimilated. Similar dilutions are also expected when
ground-based Doppler weather radar observations are as-
similated, although Y. Zhang et al. (2019) suggests that all-
sky IR BTs from geostationary satellites}owing to their
earlier detection of convection initiation}can still bring in
additional benefits compared with ground-based radars
based on a case study. Observing system experiments (OSEs)
are needed to isolate the influence of conventional observa-
tions and other types of remotely sensed observations when
they are simultaneously assimilated with all-sky IR BTs from
geostationary satellites, which is beyond the scope of this cur-
rent study.

Last, there are still many remaining issues associated with
all-sky IR BT assimilations, such as adequate observation
error modeling, treatment of the correlated observation errors,
proper covariance localization and simultaneous assimilation
of multiple channels, multiscale constraints of the environmen-
tal conditions, and the non-Gaussianity of the all-sky observa-
tions (e.g., Chan et al. 2020a). Additional studies are still
warranted to make better, more efficient, and more effective
use of all-sky IR BTs from geostationary satellites. However,
considering the overall best spatiotemporal resolution and
coverage for the monitoring and prediction of convectively
driven rainfall systems compared with other remote sensing
platforms, such as infrared and microwave radiances from
low-Earth-orbiting satellites and ground-based and airborne
Doppler weather radars, the multiyear multiregion evaluation
of the real-time ensemble forecasts of the PSU WRF-EnKF
system with the assimilation of all-sky IR BTs from the geo-
stationary Himawari-8 and GOES-16 satellites presented
here demonstrated the tremendous value of these observa-
tions in improving short-term QPF. Detailed evaluation of
the PRECIP 2022 forecasts using the special field observa-
tions collected in East Asia will be reported in a subsequent
study.
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