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Abstract Low-level clouds are shown to be the conduit between the observed sea surface temperatures
(SST) and large decadal fluctuations of the top of the atmosphere radiative imbalance. The influence
of low-level clouds on the climate feedback is shown for global mean time series as well as particular
geographic regions. The changes of clouds are found to be important for a midcentury period of high
sensitivity and a late century period of low sensitivity. These conclusions are drawn from analysis of
amip-piForcing simulations using three atmospheric general circulation models (AM2.1, AM3, and AM4.0).
All three models confirm the importance of the relationship between the global climate sensitivity and
the eastern Pacific trends of SST and low-level clouds. However, this work argues that the variability of the
climate feedback parameter is not driven by stratocumulus-dominated regions in the eastern ocean basins,
but rather by the cloudy response in the rest of the tropics.

1. Introduction

Determining how the atmosphere responds to anthropogenic forcing is complicated by the strong decadal
variability which is present in the global mean top of the atmosphere (TOA) flux of energy (N, W m−2). Over the
historical period (post-1870) these fluctuations of N include forced (natural and anthropogenic) and internal
variability. One measure of the climate sensitivity is to regress N under fixed radiative forcing versus the change
of surface air temperature T as the atmosphere adjusts to a radiative perturbation (Gregory et al., 2004).
The climate feedback parameter 𝛼 (W m−2 K−1) is then given by the slope of the regression line. This technique
has been applied to climate models forced with historical SSTs and fixed radiative forcing to obtain an estimate
of 𝛼 over the historical period. Previously examined models (Gregory and Andrews, 2016; Zhou et al., 2016,
GA16 and Z16 hereafter, respectively) have shown a period of high sensitivity (small 𝛼 over 1925–1955),
followed by a period of low sensitivity (large 𝛼 over 1975–2005), irrespective of their long-term or equilibrated
sensitivity. It has been conjectured (Z16) that an increase of eastern Pacific low-level clouds played a significant
role in the low sensitivity of the later period. To our knowledge, the influence of clouds on the global energy
budget during the high sensitivity early period has not been investigated. This raises several questions. What
role do clouds over the rest of the globe play? Can the decadal variability of 𝛼 be explained by low-cloud, or
stratocumulus-dominated regions like the Eastern Pacific? If so, what do these cloud-based influences on the
Earth’s energy budget tell us about the cloud feedback that we should expect in future climates?

The impact of low-cloud cover on the radiation budget of Earth has been the source of active research for
decades (e.g., Bony et al., 2004; Bony & Dufresne, 2005; Klein & Hartmann, 1993; Randall et al., 1984). Recently,
Qu et al. (2014, 2015) provided a thorough examination of the dependencies between low-cloud cover, the
estimated inversion strength (EIS), and surface temperature in both observations, and an ensemble of models
from CMIP3 and CMIP5. They, as did most previous studies (e.g., Klein & Hartmann, 1993; Wood & Bretherton,
2006), focused on five oceanic regions which are important for stratocumulus decks of radiatively active low-
level clouds. Only recently have the fields of stability, low-level clouds, and low-level temperature begun to
be investigated over larger swaths of the globe (Grise & Medeiros, 2016; Rose & Rayborn, 2016; Webb et al.,
2015; Zhou et al., 2016).

A linearized forcing-feedback framework has often been used to study the global mean energy budget and
assess 𝛼 despite its known temporal variations (e.g., Andrews et al., 2015; Armour, 2017; Armour et al., 2013;
Forster & Gregory, 2006; GA16; Gregory et al., 2004; Mauritsen et al., 2013; Proistosescu & Huybers, 2017; Rose
et al., 2014; Senior & Mitchell, 2000; Winton et al., 2010). Decadal variability of the energy budget has been
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Figure 1. Time series analysis of AM4.0 (black), AM3 (green), and AM2.1 (blue). Thick lines are ensemble means; shading
gives range of ensemble members. (a) Global climate feedback parameter −𝛼 (W/m2 K). (b) Same as Figure 1a but with
contributions from four tropical windows (short dash) and the rest of tropics (long dash). (c) 𝛼 (W/m2 K) decomposed
into the CRE (lower) and CLR (upper) components. (d) Global mean low-cloud cover parameter LCCLR (%/K). Global 𝛼CRE
(W/m2 K) is decomposed into the (e) short-wave CRE and the (f ) long-wave CRE. All time series computed by regression
against global, yearly mean surface air temperature change.

shown to be particularly pronounced in both 𝛼, and the cloud radiative effect (CRE; Figures 1a, 1c, 1e, and 1f,
GA16; Z16). A better understanding of the role played by clouds in determining 𝛼 will be useful regardless of
whether the changes are due to radiative forcings, natural variability, anthropogenic influences, or changes
in the uptake of heat into the oceans (Haugstad et al., 2017).

This paper examines the atmospheric response to prescribed SST patterns in simulations of the years
1870–2005. The use of three atmospheric general circulation models (AGCMs) developed at the Geophysical
Fluid Dynamics Laboratory (GFDL; AM2.1, AM3, and AM4.0) provides a comparison of models with signifi-
cantly different treatments of the clouds. Interdecadal variability of the global feedback parameter has been
previously studied (GA16; Z16) but the regional differences between cloud fields during periods of differing
sensitivity are still not clearly understood. These experiments preclude an analysis of atmosphere-ocean feed-
back processes, or a direct prediction of how the climate would respond to forcing perturbations. However,
we utilize the best estimate of observed SST and sea ice concentrations to facilitate an analysis of how AGCMs
respond to these boundary conditions. By identifying the response of AGCMs to key geographic regions of
change, we intend to move closer to a process level understanding of the connection between SST patterns,
clouds, and the climate sensitivity.
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2. Methods
2.1. Description of Amip-PiForcing Experiments, AM2.1, AM3, and AM4.0
This work uses the amip-piForcing experiment to investigate the atmospheric response to surface forcing
between the years 1870 and 2005. The experiment drives AGCMs with observationally based SST and sea
ice concentrations, while the forcing due to greenhouse gases, aerosol, and solar forcing is held constant at
assumed preindustrial levels. However, due to the different time at which these models were actively used,
the SST and sea ice fields differed slightly among models. The amip-piForcing experiment develops some of
the ideas from Andrews (2014) and is one of the CFMIP3 experiments; for additional details and examples see
Webb et al. (2017), GA16, and Z16. For each of the three AGCMs, five ensemble members have been used.
Three distinct models are used to demonstrate the robustness of the cloud feedback response.

Cumulus cloud parameterizations are one of the largest differences among the GFDL atmospheric models
analyzed here. The AM2.1 model uses the Relaxed-Arakawa-Schubert (Moorthi & Suarez, 1992) scheme; AM3
uses the Donner-Deep scheme for deep convection (Donner, 1993) and the University of Washington scheme
(UWShCu, Bretherton et al., 2004) for shallow convection. AM4.0 uses a version of the UWShCu scheme that has
been modified to include two bulk plumes which account for shallow and deep convection. Documentation
of the GFDL AGCMS can be found in GFDL-GAMDT (2004), Donner et al. (2011), and AM4.0 will be documented
with manuscripts which are currently in preparation. Some of the details of the convection scheme in AM4.0
are given in Zhao et al. (2016), and a study looking at the influence of CREs on the intertropical convergence
zone with a recent prototype AM4 in aquaplanet mode are described in Popp and Silvers (2017).

2.2. Methodology of Analysis
We are interested in the influence of clouds on the decadal variability of the TOA net global mean radiative
flux (N). As in GA16 the global mean energy budget is given by N = F − 𝛼T , where we have assumed that
R=𝛼T and 𝛼 is the climate feedback parameter. Our interest is in the covariation of R (global mean TOA radia-
tive flux change due to some perturbation to the climate) and T (global mean surface air temperature change)
rather than the change relative to a control state. Smaller values of 𝛼 require a larger T to balance the imposed
perturbation to the system. We compute the climate feedback parameter in the same way as in GA16 (their dif-
ferential climate feedback parameter 𝛼̃). That is, linear regression is used to compute the relationship between
R and T , given by 𝛼. The regression is applied to the global yearly mean values over moving 30 year windows.
In the same way we have computed the covariation of the CRE, short-wave (SW) CRE, long-wave (LW) CRE, and
the clear-sky fluxes with T , as well as the anomalous global low-cloud cover (LCC; clouds below 680 hPa) with
T (𝛼CRE, 𝛼SW CRE, 𝛼LW CRE, 𝛼CLR, and LCCLR, respectively; LR denoting linear regression method). These time series
are shown in Figure 1 with each point representing the midpoint of a 30 year window. We emphasize that
the terminology “climate sensitivity” and “climate feedback parameter” here simply refer to measures of the
change of radiative balance at TOA with fixed radiative forcing and prescribed SST. This method of computing
climate sensitivity is in keeping with previous studies (Cess et al., 1989; Silvers et al., 2016; GA16), and we
assume there is useful correspondence between the interaction of clouds and the TOA energy budget found
here and in a fully coupled Earth system. For amip-piForcing experiments, F = 0, and the “effective” climate
sensitivity can be inferred as F2×∕𝛼, where F2× is an appropriate representative value of radiative forcing due
to doubled (relative to preindustrial) CO2 concentrations (we use F2×=3.4 W m−2, Flato et al., 2013). This is
distinct from the equilibrium climate sensitivity (ECS), defined as the equilibrium response to doubled CO2

concentrations.

The strong connection between global clouds and 𝛼 is shown in Figure 1. To investigate the spatial patterns
of this connection, we use linear regression to compute trends over time at each grid point for SST, SW CRE,
LW CRE, LCC, and EIS (Figures 2 and 3a). Global figures focus on ocean regions because it is primarily there
that low stratiform clouds are found.

Previous studies have shown lower tropospheric stability (LTS) to be a useful diagnostic tool that connects
low-cloud changes to the characteristics of the large-scale environment, especially within traditionally defined
stratocumulus regions (Klein & Hartmann, 1993; Medeiros et al., 2008; Webb et al., 2015; Wood & Bretherton,
2006). We analyze the EIS, which can be thought of as a correction to the LTS based on the moist adia-
batic profile. The LTS used by Klein and Hartmann (1993) was defined as LTS=𝜃700 hPa −𝜃sfc, where 𝜃 is the
potential temperature and the subscript indicates the level at which the values are taken. For EIS we use the
approximation made by Wood and Bretherton (2006):

EIS = LTS − Γ850
m (z700 − LCL) (1)
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Figure 2. (top row) Trends of observationally derived SST values during periods of high and low sensitivity. To highlight
the pattern the mean trend for each period was subtracted. Trends of simulated (AM4.0) (middle row) short-wave (SW)
CRE and (bottom row) long-wave (LW) CRE. Left (right) column shows trends between 1925 and 1955 (1975 and 2005).
SST fields are from AMIP boundary conditions, PCMDI-AMIP (Taylor et al., 2000). Black boxes in Figure 2 (top right) show
window regions discussed in text.

utilizing the moist adiabat (Γ850
m ), height on the 700 hPa surface (z700), and the lifting condensation level

(LCL). Further details of the boundary conditions, parameterizations, and EIS computation are given in the
supporting information.

3. Results
3.1. Contrasting Time Periods of Global Feedback
Strong decadal variability of−𝛼 and global low-cloud cover (LCCLR) is shown in Figure 1. The thick lines indicate
ensemble mean values for the three different AGCMs; shading indicates the range of ensemble members.
Immediately apparent is the period with high sensitivity (small 𝛼) centered around approximately 1940. After
this the sensitivity of all three models steadily decreases for the remainder of the simulations. This decadal
variability is mirrored in the evolution of 𝛼CRE, 𝛼SW CRE, and LCCLR (Figures 1c–1e), while the corresponding
time series of clear-sky fluxes and 𝛼LW CRE remain largely constant (Figures 1c and 1f), indicating that the global
energy budget is tightly coupled to fluctuations of the total cloud field. The time series of LCCLR in Figure 1d
shows that the evolution of global mean LCC anomalies closely tracks with the feedback parameter. This is
surprising because we expected radiative effects from high clouds to have a larger influence on 𝛼, and while
the importance of tropical low-level clouds to the uncertainty of climate sensitivity has been demonstrated
(Bony & Dufresne, 2005), the contribution of global mean low-level clouds to the temporal variability of 𝛼 has
been less clear. To quantify the influence of regional changes in LCC on the TOA radiative budget, the LW CRE
and SW CRE trends are computed over the two periods of interest (Figure 2). To explore contributions from
key geographic regions 𝛼 is spatially decomposed into windows.

Locations of the windows were chosen to represent regions of importance for stratocumulus clouds between
±30∘ based on observations (Wood, 2012, his Figure 4a) and our results (Figure 3). The windows used for this
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Figure 3. (a) Trends of simulated low-cloud cover (first and second rows) and estimated inversion strength (third and
fourth rows). Rows 1 and 3 show trends between 1925 and 1955, rows 2 and 4 show trends between 1975 and 2005.
Columns 1–3 show AM2.1, AM3, and AM4.0, respectively. (b) Mean (±60∘ , 9 year running mean) time evolution of
low-cloud cover (ΔLCC) for AM2.1 (blue), AM3 (green), and AM4.0 (black). Thick lines show simulated ΔLCC, and
thin lines show ΔLCC approximated using equation (3) with coefficients determined by multiple linear regression
(supporting information Table S2). Dashed lines show 𝛽ΔSST term. Black boxes show window regions discussed in text.

analysis are shown in Figures 2 and 3. The feedback parameter has been computed over particular regions
(i) using

T𝛼i =
∫ NdAi

∫ dA
= Niwi (2)

with each 𝛼i computed using linear regression of Niwi on T with a sliding 30 year window and wi representing
the relative area of each window. For the global decomposition used in this study

∑
i 𝛼i ≈𝛼 and the variability

of 𝛼 is shown (Figure 1b) to be almost entirely due to the tropics (±30∘) minus the windows (compare 𝛼 from
the windows (short dash) with 𝛼 from the tropics minus the windows (long dash) and with the global mean 𝛼).
Further, tropical regions typically dominated by stratocumulus do not significantly contribute to the variability
of 𝛼 (Figure 1b; short dashed lines equal sum of 𝛼 over windows shown in Figures 2 and 3), despite being
important for the net radiation budget.
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Because there is such a contrast between the “early” period (1925–1955) and the “late” period (1975–2005) in
the time series shown in Figure 1, we focus on a comparison between the atmospheric responses to the chang-
ing SSTs during these periods. Between 1925 and 1955 the average global feedback parameter for AM4.0,
AM3, and AM2.1 changes from values of (−1.6, −1.0, and −1.8 W m−2 K−1) to (−2.7, −2.4, and −2.3 W m−2 K−1)
between 1975 and 1989. This represents a dramatic change in 𝛼 and determining the cause will be an impor-
tant part of our ability to understand how clouds respond to SST patterns and thus influence the global energy
budget on decadal time scales. Mean LCC, SWCRE, and EIS in each window over both time periods are tabu-
lated in Table S1 in the supporting information. From the early to late period the 30 year trends in the eastern
Pacific increased by 2.8% (LCC), decreased by 3.3 W m−2 (SWCRE), and increased by 0.2 K (EIS). The other win-
dows show equal or larger changes. Trends in the south Indian window showed LCC increased by 3.8%, SWCRE
decreased by 6.7 W m−2, and EIS increased by 0.5 K.

Changing SST patterns are the primary atmospheric driver in these experiments. Anomalous patterns of SST
change over each period (trends minus mean trend over that period) are shown in Figure 2. The later period
(1975–2005) is characterized by an east-west dipole in the Pacific ocean. As highlighted by Z16, this leads to an
increase of LCC in the eastern regions and decreasing cloud feedback. In contrast, the earlier period SST trend
is characterized by negative tropical anomalies and positive anomalies in the higher latitudes. We find that
the particular response of the low-level clouds to SST patterns differs dramatically between the two periods.
In the early period, the midlatitudes are marked by strongly decreasing low-level cloud. In the late period the
Southern Hemisphere oceans are almost entirely covered by increasing amounts of low-level cloud (Figure 3).
As discussed in the next two sections, there is a clear connection between these SST patterns, the LCC, and
EIS fields.

3.2. Dependence of LCC on EIS and SST
The known importance of low-level clouds in the global response to climatic perturbations and the impor-
tance of SSTs to the low-level cloud fields motivate us to look at how the LCC evolves during the historical
period. We create the anomaly time series, ΔLCC, ΔEIS, and ΔSST by spatially averaging over the region
of interest, removing the climatological time mean, and computing yearly mean values for each variable.
To probe the dependence of LCC on low-level stability multiple linear regression is used to decompose ΔLCC
into a linear combination of ΔEIS and ΔSST. The anomalous changes of tropical marine LCC were shown (Qu
et al., 2014; Z16) to be well explained by a linear combination of the change in EIS and SST. The coefficients 𝛾
and 𝛽 can thus be determined for particular experiments or models in the following assumed relationship:

ΔLCC ≈ 𝛾ΔEIS + 𝛽ΔSST. (3)

Between ±30∘, (𝛾, 𝛽) = (4, 7,−0.13;AM2.1), (5.6,−0.53;AM3), and (4.8,−0.39;AM4.0) indicating a model
dependent relative contribution from EIS and SST to LCC. Time series of the mean values of anomalous low-
cloud cover ΔLCC are shown in Figure 3b (±60∘) and supporting information Figure S3 (±30∘). Thick lines
show the ΔLCC values for each of the three AGCMs, thin lines show the ΔLCC computed with equation 3, and
dashed lines show 𝛽ΔSST. High correlations betweenΔLCC and the linear combination ofΔEIS andΔSST indi-
cate the above relationship is an excellent approximation. Because the three models examined here all use
prescribed SSTs, the different values of 𝛼 and 𝛽 likely indicates differences in the relative importance of the EIS
fields which are in turn driven by the midtropospheric temperature, in this case the temperature at 700 hPa.

Several noteworthy points can be drawn from Figure 3 and supporting information Table S2. Increasing EIS
leads to increasing LCC, but increasing SST leads to decreasing LCC. The linear decomposition works well
for all three GFDL models, but with differing degrees of dependence among the models on the ΔSST and
ΔEIS terms. The relatively flat 𝛽ΔSST time series in Figure 3 indicate that when the midlatitudes are included,
the anomalies of EIS become dominant over the anomalies of SST in determining the changes of LCC. The
precipitous drop of anomalous LCC (Figure 3b) corresponds well to the minimum of LCCLR and maxima in 𝛼CRE

and 𝛼 around 1940 (Figure 1). The successful reconstruction of the mean ΔLCC in the tropics and between
±60 and the close mirroring between the fields of LCC and EIS trends (Figure 3) indicate how closely tied to
the SST pattern the LCC and EIS are.

3.3. Response of Clouds to EIS and SST Patterns
The known connections between LCC and SST (Andrews & Webb, 2017; Myers & Norris, 2016; Qu et al., 2014;
Zhou et al., 2016) combined with the strong linear dependence of LCC anomalies on the EIS field shown in
the previous subsection encourage examination of the global trends of LCC and EIS. A strong relationship
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between LCC and EIS in many regions of the globe is seen (Figure 3) with the 30 year trends of LCC and EIS
between the late (1975–2005) and early (1925–1955) periods. The response of LCC and EIS to the SST patterns
is largely consistent among the three models. Both time periods have an increase of EIS and LCC in the equa-
torial eastern Pacific Ocean. During the early period the LCC decreases in much of the Southern Hemispheric
oceans and northern midlatitudes. During the later period there is an increase of LCC throughout much of the
Southern Hemispheric oceans and a decrease of LCC in the north Atlantic and northwest Pacific. This is consis-
tent with a positive CRE (large climate sensitivity) during the early period and a negative CRE (low climate sen-
sitivity) during the later period (Figure 1). Also prominent is the strong Atlantic basin correspondence between
LCC and EIS trends during both periods, and the strong shift in the Atlantic from broadly negative trends in
the early period to an interhemispheric dipole in the late period. These patterns of LCC modeled during the
late period match fairly well with trends of total cloud cover obtained from bias corrected ISCCP observations
(supporting information Figure S3).

The trends of LCC (Figure 3, first and second rows) closely mirror the trends of EIS (Figure 3, third and fourth
rows) and are related to the SST patterns during both periods. In particular, increasing EIS and LCC occurs in
regions of decreasing SST (northeastern and southeastern Pacific, the Indian Ocean, the southern Atlantic,
and the Southern Ocean). This relationship has been thoroughly discussed in the literature in the context of
stratocumulus regions and subsiding circulations (e.g., Klein & Hartmann, 1993; Myers & Norris, 2013; Qu et al.,
2014, 2015; Wood & Bretherton, 2006). Figure 3 shows the relationship to also be important across much of
the world ocean. For example, in the early period we see the dominant changes of LCC to be influenced by
decreases of EIS over regions with increased SST. There is a clear connection between EIS, SST, and LCC outside
of the regions of stratocumulus clouds.

4. Conclusions

We show that low-level clouds in the trade wind regions (±30∘) drive the strong decadal variability of the
climate feedback parameter over the historical twentieth century. This is distinct from the well-known fact
that low-level clouds are also the main source of uncertainty of the ECS among GCMs. Changes in the LCC
fields track excellently with 𝛼, 𝛼CRE, and 𝛼SW CRE and are consistent with a period of high sensitivity (small 𝛼,
negative LCC anomalies, and CREs near zero) between 1925 and 1955 and low sensitivity (large 𝛼, positive
LCC anomalies, and negative CREs) between 1975 and 2005. These changes in the cloud fields are ultimately
driven by differences in the SST patterns between the two time periods. The variability is not simply due to
a weakening or strengthening of stratocumulus cloud decks, but rather, it is marked by changes in the trade
wind regions as a whole and in particular, the tropical Atlantic. The southern ocean low-level clouds also have
contrasting trends between the two periods.

We decompose 𝛼 into specific geographic windows and show the decadal variability of 𝛼 to be almost entirely
due to the tropical region between±30∘ (Figure 1b). Large regional changes in the trend of LCC mirror changes
in EIS and SWCRE even outside of the regions traditionally thought to be influenced by EIS (Figures 2 and 3).
Although specific windows traditionally identified with persistent stratocumulus cloud decks show physically
consistent relationships between the LCC, SWCRE, and EIS between the two periods of differing sensitivity,
they only contribute a total of around 10% to the magnitude of global mean 𝛼 (Figure 1b). As computed here,
the sum of these windows occupy about 6% of the globe. The same computations with the windows from
Qu et al. (2014) accounts for around 13% of 𝛼 while occupying about 9% of the globe (supporting information
Figure S1). In all cases, contributions to the decadal variability of 𝛼 from particular tropical windows are
minimal. Although the small contribution to 𝛼 from the windows examined here (Figure 1b) is partly due to
their small spatial extent relative to the broader tropics, their temporal variability does not match well with
that of the global mean 𝛼, and it is the absolute contribution to the global mean 𝛼 which we are interested in.

Following the work of Qu et al. (2014, 2015) and Z16, we use multiple linear regression to estimate the depen-
dence of ΔLCC on ΔEIS and ΔSST for three AGCMs over the historical period. The linear model of LCC change
works well when applied to both ±30∘ and ±60∘. The spatial distribution of EIS trends corresponds well to
trends of LCC in regions with stratocumulus, trade wind cumulus, and shallow cumulus clouds. This indicates
that the strong influence of EIS on LCC holds for disparate patterns of SST and across an 𝛼 range (in this study)
of 2.2 W m−2 K−1 .

Despite the broad similarity of simulations among the three AGCMs used in this study there are differences.
The sensitivities of AM2.1 and AM4.0 are lower than AM3 in the midtwentieth century consistent with a
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stronger midlatitude decrease of low-level clouds in AM3 during that period. While ΔLCC of all three AGCMs
have a linear dependence on ΔEIS and ΔSST, the relative dependence on each variable differs among models
(supporting information Table S2). Over the second half of the twentieth century AM4.0 and AM3 show a
strong decrease of 𝛼 while 𝛼CRE decreases by 1.5 W m−2 K−1 (Figure 1). In contrast, AM2.1 has a weak decrease
of 𝛼 and a decrease of 𝛼CRE of only 0.9 W m−2 K−1 between the two periods.

Recently, Gregory and Andrews (GA16) computed an effective climate sensitivity over the historical period
of 2 K. This is significantly less than the sensitivity from the corresponding AOGCMs in response to 4 × CO2

experiments (Andrews et al., 2012). Similarly, the effective climate sensitivities of AM2.1 (1.7 K), AM3 (2.0 K),
and AM4.0 (1.9 K) over the historical period are significantly lower than the ECS of the parent AOGCMs (ESM2M
(3.3 K) and CM3(4.8 K), computed from multimillennia equilibrium runs). Much of the uncertainty in the ECS
has been attributed to cloud feedbacks (Bony & Dufresne, 2005; Cess et al., 1989). Despite large differences
in ECS and effective climate sensitivities among AM2.1, AM3, and AM4.0, this study demonstrates that the
cloudy response to changing SST patterns over the historical period is similar for these AGCMs.

Assuming that 𝛼 is constant has provided a useful approximation of the Earth’s energetic response to pertur-
bations despite the knowledge (e.g., Andrews et al., 2012; Andrews et al., 2015; Armour et al., 2013; Senior &
Mitchell, 2000) that 𝛼 is not constant and that the energetic response is nonlinear. Previous work has shown
how dependent the equilibrium sensitivity is on low-level clouds in both “fully comprehensive” Earth system
models (Paynter & Frölicher, 2015; Sherwood et al., 2014; Vial et al., 2013) as well extremely simplified cases
(Silvers et al., 2016). Our analysis of the historical period reveals how dependent temporal variability of 𝛼 is on
changes in the global low-level cloud fields. While the effective climate sensitivity over the historical period is
distinct from the ECS, the influence of clouds on the global energy budget is important for both. Because our
AGCMs are driven by prescribed SST and sea ice concentrations and constant atmospheric forcing, the relative
strength of the feedbacks seen in this study may differ from the feedbacks of a fully interactive Earth system
model. But while the cloud feedbacks in the full Earth system may have a more nuanced response, this work
clearly documents how the atmospheric cloudy response to particular SST patterns plays a dominant role in
the energy budget at the TOA.

Recent work has increasingly highlighted the critical role of cloud base cloudiness in determining the climate
sensitivity of GCMs (Brient et al., 2015; Vial et al., 2017). The atmospheric stability (EIS or LTS) provides an
excellent diagnostic tool with which to determine how parameterized turbulence and convection influence
the low-level atmospheric temperature. This paper shows that EIS simulates LCC very well throughout the
global oceans during periods of both high and low sensitivity. Our demonstration of the strong connection
between atmospheric stability, LCC, and 𝛼 indicates a useful link between GCM parameterizations and the
climate sensitivity.
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