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ABSTRACT

The subject of this study is topographically bound low-level jets, such as the South American summertime

low-level jet on the eastern side of the Andes and its companion, the Chilean low-level jet on the western side

of the Andes. These jets are interpreted as balanced flows that obey the potential vorticity invertibility

principle. This invertibility principle is expressed in isentropic coordinates, and the mathematical issue of

isentropes that intersect the topography is treated by the method of a massless layer. In this way, the low-level

jets on the western and eastern sides of the Andes can both be attributed to the infinite potential vorticity that

lies in the infinitesimally thin massless layer on the topographic feature. To obtain a cyclonic flow centered on

the topographic feature, the mountain crest must have been heated enough to draw down the overlying isen-

tropic surfaces; otherwise, isentropic surfaces bend upward at the mountain crest and an anticyclonic flow is

produced. Both anticyclonic and cyclonic solutions are obtained here using analytical and numerical methods to

solve the invertibility principle. The summertime topographically bound flows discussed here are quite distinct

from the wintertime Rossby wave train patterns that occur when strong westerlies impinge on the topography.

1. Introduction

Figure 1 shows the 1 December 2009 to 31 January

2010 mean winds at 925 hPa in the region of South

America. A striking feature of Fig. 1 is the strong cy-

clonic flow centered on the Andes. The South American

low-level jet (SALLJ) is evident in the northerly flow

east of the Andes, while the Chilean coastal low-level jet

is evident in the southerly flow over the eastern Pacific

Ocean. These Southern Hemisphere low-level jets (LLJs)

are analogous to the summertime low-level jets around

the mountainous regions of North America, that is, the

Great Plains low-level jet (GPLLJ) and the California

coastal low-level jet. That there is a cyclonic circulation

centered on both the Rockies and the Andes suggests the

possibility of a common dynamical link between the

prevalent low-level jets of North and South America.

Figures 2 and 3 show east–west cross sections of the

2-month mean meridional wind fields and the mean

isentropes observed over the Rockies and the Andes.

Figures 1–3 were constructed using Year of Tropical

Convection (YOTC) analysis [as described by Waliser

et al. (2012)]. The time resolution of these European

Centre for Medium-Range Weather Forecasts analysis

fields is 6 h and the horizontal resolution is 0.58 3 0.58

with 15 irregularly spaced vertical levels. The YOTC

analysis is available for the 2-yr period between May

2008 and April 2010. Although originally proposed to be

a 1-yr research program, YOTC was extended for an

additional year in order to capture both La Niña and

El Niño phases of an ENSO cycle. Wind fields around

the Andes are shown at 218 and 308S. The SALLJ often

maximizes near 208S while, as seen in Fig. 2, the coastal

LLJ is stronger farther south. Cross sections of the wind

fields around the Rocky Mountains are shown at 308 and

358N. The GPLLJ maximizes at about 258N but, as seen

in Fig. 3, it is still quite strong at 308 and 358N. The

coastal LLJs tend to have a wind maximum closer to the

surface than the jets to the east of the mountain ranges.

The coastal jets are also broader than the plains jets

partly because of the influence of the Pacific anticyclonic

circulations to the west. Isentropes are generally drawn

down over the mountain ranges, thereby intersecting the

earth’s surface along the sides and crests of the moun-

tains. It should be noted that, on individual days, these
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low-level jets can be considerably stronger than shown

on 2-month mean cross sections. For example, Vera

et al. (2006, their Fig. 8b) show a specific SALLJ event in

February 2003 with a maximum wind of 25 m s21 at

a height of 800–700 hPa. The cyclonic motion centered

on the mountain ranges is the most obvious feature of

the wind fields in these figures. The North American

Regional Reanalysis also clearly shows a dominant cy-

clonic circulation (see Jiang et al. 2007, their Fig. 1) over

the Rocky Mountains. We have also constructed cross

sections (not shown) like Figs. 2 and 3 for the meridional

geostrophic wind. The meridional geostrophic wind

fields are noisier than the fields shown in Figs. 2 and 3

because the zonal pressure gradient force is computed

from geopotential fields interpolated to isobaric surfaces

from the ECMWF hybrid vertical coordinate data. In

spite of this practical difficulty, the cross sections confirm

that the topographically bound low-level flows can be

regarded as essentially geostrophic flows.

One of the first climatologies of LLJs was given by

Bonner (1968), along with an often used set of wind

shear criteria to define LLJs. Stensrud (1996) provided

a review of LLJs and, in particular, their significant in-

fluence on the global climate. An excellent review of

the literature relevant to LLJs and analysis of the dy-

namical mechanisms that have been historically pro-

posed to explain the existence and variability of LLJs was

given by Jiang et al. (2007). Much of the previous research

on LLJs can be loosely grouped into two categories. The

first includes boundary layer processes and forcing on

relatively short (diurnal to a few days) time scales. Rel-

evant studies include Blackadar (1957), Holton (1967),

Jiang et al. (2007), and Rife et al. (2010). These studies

were particularly interested in determining the physical

mechanisms behind the diurnal oscillation that is ob-

served in many LLJs. The second category deals mostly

with the synoptic-scale monthly or seasonal mean struc-

ture of LLJs and includes studies such as Wexler (1961),

FIG. 1. Two-month mean 925-hPa wind (10 m s21 vector in-

dicated just left of the color bar) from the YOTC analysis data. This

mean has been computed by averaging analysis data with a time

resolution of 6 h, so diurnal variability has been smoothed. Vectors

are not drawn in the region of the Andes above 925 hPa. The back-

ground map shows topography (see color bar). The horizontal res-

olution of the YOTC analysis is 0.58 3 0.58, but for clarity only 18 3 18

wind data are plotted here.

FIG. 2. Mean warm season cross section of meridional wind at

(top) 218S and (bottom) 308S from the ECMWF (see text) YOTC

data. The magnitude of the meridional wind is given by the color

bar; black contours are isentropes. YOTC data are available at the

levels 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 850, 900, 925,

950, and 1000 hPa, but only the 10 data levels between 400 and

1000 hPa are used in this cross section and in Fig. 3.

SEPTEMBER 2012 S I L V E R S A N D S C H U B E R T 2879

Brought to you by SUNY AT STONY BROOK (3315) | Unauthenticated | Downloaded 05/29/24 03:37 PM UTC



Byerle and Paegle (2002, 2003), and Ting and Wang

(2006). These two groups certainly have some overlap.

The research presented here interprets LLJs as syn-

optic-scale topographically bound balanced motions

attributable, through the potential vorticity invertibility

principle, to the heating of elevated terrain.

The theoretical study most relevant to the present work

is that of Eliassen (1980), who investigated the steady,

topographically bound, balanced response of a rotating,

stratified fluid to orography. Although Eliassen did not

specifically apply his theory to LLJs, his results provide

physical insight into the dynamical characteristics of

these phenomena. Eliassen defined isentropic obstacles

as those for which the lowermost isentrope continuously

follows the topographic surface. A nonisentropic obstacle

is one for which the topographic surface punctures the

lowermost isentropes. Eliassen showed that solutions of

the potential vorticity invertibility principle for an isen-

tropic ridge were only possible if the height of that ridge

did not exceed its critical value. This ‘‘subcritical ridge’’

case is illustrated by the left panel of Fig. 4, which shows

that the isentropes are compressed as they bend up

over the mountain crest, thereby producing a balanced

anticyclonic flow above the crest. If the ‘‘critical crest

height’’ is exceeded, the ridge must puncture the lower-

most isentropes. Two other cases not investigated by

Eliassen are shown in the middle and right panels of

Fig. 4. The middle panel shows a surface of constant

geopotential that has been locally heated. In this case

the isentropes bend downward and a balanced, cyclonic

flow is produced. The surface potential temperature

anomaly shown in the middle panel of Fig. 4 represents

a balanced flow structure similar to those studied by

Hoskins et al. (1985) and Thorpe (1986). Their work

solved an isobaric coordinate form of the invertibility

principle for synoptic disturbances in gradient wind

balance, whereas the present study solves the isentropic

coordinate form of the invertibility principle for synoptic

disturbances in geostrophic balance. A combination of

the two cases shown in the left and middle panels of

Fig. 4 results in the heated obstacle shown in the right

panel. Clearly, the right panel is the case most rele-

vant to the observations shown in Figs. 1–3.

The purpose of the present paper is to extend the

analysis of Eliassen to include all three cases shown in

Fig. 4 and thereby demonstrate that many LLJs can be

interpreted as balanced flows attributed, through the

potential vorticity invertibility principle, to the infinite

potential vorticity that resides in the massless layer over

locally heated topography such as illustrated in the right

panel of Fig. 4. A complete potential vorticity analysis of

LLJs would have to include both the potential vorticity

at the surface that results from a gradient of surface po-

tential temperature and any potential vorticity anomalies

that reside in the interior. The surface component is

related to surface radiative heating while the interior

component is due to convective activity that produces

nonuniform potential vorticity along interior isentropic

surfaces. The interaction between the interior potential

vorticity and the surface gradient of potential temperature

was reviewed by Hoskins et al. (1985). A nongeostrophic

generalization was applied to a wake circulation on the

lee side of a mountain by Schneider et al. (2003). We here

focus on the surface potential temperature variation. We

do not wish to imply that the effect of the surface po-

tential temperature variation is greater than that of the

interior potential vorticity anomalies in all cases, but

rather that an important part of the LLJ response is

related to this surface potential temperature variation.

FIG. 3. Mean warm season cross section of meridional wind field

at (top) 308N and (bottom) 358N from the ECMWF YOTC data.

The magnitude of wind is given by the color bar; black contours are

isentropes.
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The outline of the paper is as follows. Section 2 pres-

ents the f-plane invertibility principle in isentropic co-

ordinates. Section 3 derives analytical solutions for the

subcritical isentropic ridge case. An analytical formula for

the critical crest height is then derived. The analytical

methods used in section 3 yield closed form solutions only

in cases where there is no massless layer (i.e., the lower

boundary is an isentropic surface). To compute the wind

and mass fields that result from locally heated lower

boundaries, section 4 solves the invertibility principle using

a finite-difference approximation. An analysis is then

made of the results and how they compare to observations

of LLJs. Concluding remarks, including a discussion of

a generalization from f-plane theory to the sphere, are

given in section 5.

2. Invertibility principle

Consider hydrostatic, geostrophic, y-independent mo-

tions of a compressible stratified fluid on an f plane. Using

the potential temperature u as the vertical coordinate, the

potential vorticity is given by

P 5 f 1
›y

›x

� �
2

1

g

›p

›u

� �21

, (1)

with f denoting the constant Coriolis parameter, g the

acceleration of gravity, y(x, u) the meridional component

of the geostrophic flow, and p(x, u) the pressure. Ex-

pressing the density by r 5 p/(RT) 5 cpp/(RuP), it is

easily shown that ur(dP/dp) 5 1, where P 5 cp(p/p0)R/cp

with p0 denoting the constant reference pressure, R the

gas constant, and cp the specific heat at constant pres-

sure. This allows (1) to be written in the form

g

urP
f 1

›y

›x

� �
1

›P

›u
5 0. (2)

Using the geostrophic relation fy 5 (›M/›x) and the

hydrostatic relation P 5 (›M/›u), where M 5 uP 1 f is

the Montgomery potential and f is the geopotential, we

can write the thermal wind relation in the form

f
›y

›u
2

›P

›x
5 0. (3)

With proper boundary conditions and with P(x, u) spec-

ified, (2) and (3) constitute an invertibility problem for

the unknown functions y(x, u) and P(x, u). Because of

the dependence of r on P, (2) is nonlinear. However, the

nonlinearity is weak and, for the analytical solutions

presented in section 3, it will be removed by replacing

r(x, u) with the specified far-field profile ~r(u). For the

numerical solutions presented in section 4, this non-

linearity will be retained.

3. Analytical solution for the case of an isentropic
mountain

For the analytical results presented in this section it is

preferable to work with deviations from the far-field

values. In the far field the flow vanishes, and the pressure

and potential vorticity take on the horizontally homo-

geneous values ~p(u) and ~P(u), which are related by

~P 5 f 2
1

g

›~p

›u

� �21

. (4)

Denoting the far-field density by ~r(u), it is easily shown

that u~r(d ~P/d~p) 5 1, where ~P 5 cp( ~p/p0)R/cp . This allows

(4) to be written in the form

gf

u~r ~P
1

› ~P

›u
5 0. (5)

Taking the difference of (2) and (5), we obtain

~r ~P

rP

›y

›x
1

f u2N2

g2

� �
›P9

›u
5 f 1 2

~r ~P

rP

 !
, (6)

FIG. 4. Schematic vertical cross sections representing the three idealized configurations

studied here. Contours represent lines of constant potential temperature (isentropes), with the

vertical axes interpreted as height. (left) An isentropic obstacle, (middle) a heated flat lower

surface, and (right) a heated obstacle.
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where P9(x, u) 5 P(x, u) 2 ~P(u) is the Exner function

anomaly, and where the buoyancy frequency N(u) is

defined by

N2(u) [
g2

u2
2

d ~P

du

 !
21

. (7)

In the analysis of this section, four simplifying as-

sumptions are made: (i) the lower boundary is assumed

to be an isentropic surface; (ii) the factors (~r/r) in (6) are

approximated by unity; (iii) on each isentropic surface

the potential vorticity P is assumed to be equal to its far-

field value ~P so that the right-hand side (rhs) of (6)

vanishes and the coefficient of (›y/›x) becomes unity;

and (iv) the reference state buoyancy frequency N(u) is

assumed to be inversely proportional to u, that is, N(u) 5

NBuB/u, where NB and uB are constants, which results in

a constant coefficient for the second term in (6). In the

numerical calculations presented in section 4, only the

assumption concerning the vertical profile of N(u) will

be retained. In particular, the lower boundary will not

be an isentrope, and the potential vorticity will not be

uniform on those isentropes that intersect the lower

boundary, although we will still assume the potential

vorticity is uniform on those isentropes that do not in-

tersect the lower boundary. Thus, the present work con-

siders only those balanced flows associated with surface

processes, and not balanced flows associated with in-

terior potential vorticity anomalies. However, it should

be noted that cumulus convection and convective turbu-

lence over elevated terrain will result in interior potential

vorticity anomalies and associated balanced flows that

are not considered here.

For the particular reference state N(u) 5 NBuB/u, the

definition (7) can be integrated to obtain

~P(u) 5 cp 2
g2

u2
BN2

B

(u 2 uB), (8)

where ~p(u
B

) 5 p
0
. The reference state hydrostatic equa-

tion d ~M/du 5 ~P can then be integrated to obtain

~M(u) 5 cpu 2
g2

2u2
BN2

B

(u 2 uB)2, (9)

where we have assumed ~f (uB) 5 0. Since ~f(u) 5
~M(u) 2 u ~P(u), we can use (8) and (9) to obtain

~f(u) 5
g2

2u2
BN2

B

(u2 2 u2
B). (10)

The relationship of pressure and potential temperature for

the reference state, as determined from (8), is plotted in

Fig. 5, where we have chosen cp 5 1004.5 J kg21 K21, g 5

9.8 m s22, uB 5 295 K, and (u
B

/g)N2
B 5 5:1373 K km21.

This choice of uB and NB results in a profile with ~p(u) 5

150 hPa at u 5 360 K. The associated value of NB is

1.3064 3 1022 s21. For the model top, the value uT 5

360 K is used throughout this study. Although idealized,

this reference state profile, with u 5 331 K at 400 hPa and

u 5 295 K at 1000 hPa, can be considered typical of the

profiles found at different locations in Figs. 2 and 3,

noting of course that the actual values of u on the lower

boundary in Figs. 2 and 3 have a relatively wide range

because of the contrast between the cold ocean and the

warm continent.

With the four simplifying assumptions listed above,

the Cauchy–Riemann conditions (6) and (3) simplify to

(11) and (12) below. We shall require that (11) and (12)

hold in a region that includes an underlying topographic

feature whose geopotential is specified by fS(x). As for

boundary conditions, we require that y and P9 approach

zero in the far field, which is expressed in (13). We also

require that the upper boundary is both an isentropic

(u 5 uT) and isobaric surface, which is expressed as (14).

To formulate the lower boundary condition we combine

the x derivative of M 2 uP 5 f with the geostrophic and

hydrostatic relations to obtain f [y 2 u(›y/›u)] 5 (›f/›x),

which, when applied at u 5 uB, yields (15). In summary,

the elliptic problem is

›y

›x
1

f u2
BN2

B

g2

 !
›P9

›u
5 0, (11)

f
›y

›u
2

›P9

›x
5 0, (12)

with boundary conditions

FIG. 5. Reference pressure ~p as a function of u, computed from (8).
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y/0 and P9/0 as x/6‘, (13)

P9 5 0 at u 5 uT , (14)

f y 2 u
›y

›u

� �
5

dfS(x)

dx
at u 5 uB. (15)

This elliptic problem can be solved using Fourier integral

transforms. The details can be found in the appendix. For

all calculations presented in this paper we have chosen

the geopotential on the lower boundary as

fS(x) 5 gHe2x2/a2

, (16)

where the constants H and a respectively specify the

mountain height and width. The final solutions for the

balanced wind and mass fields are

y(x, u) 5 2
gHa

f
ffiffiffiffi
p
p
ð‘

0
ke2a2k2/4

"
e2k(u2u

B
) 1 e2k(2u

T
2u

B
2u)

1 1 kuB 1 (1 2 kuB)e22k(u
T

2u
B

)

#
sin(kx) dk, (17)

P9(x, u) 5 2
g2Ha

f uBNB

ffiffiffiffi
p
p
ð‘

0
ke2a2k2/4

"
e2k(u2u

B
) 2 e2k(2u

T
2u

B
2u)

1 1 kuB 1 (1 2 kuB)e22k(u
T

2u
B

)

#
cos(kx) dk, (18)

where k is the horizontal wavenumber and k 5 gk/

( fuBNB). Equations (17) and (18) are the Fourier in-

tegral representations of the solutions to the invertibility

problem (11)–(15). Plots of the solutions y(x, u) and

P9(x, u) are easily constructed through numerical eval-

uation of the Fourier integrals at each point of an array

of points in (x, u) space. In the construction of several of

the figures shown here, we have chosen to display iso-

lines of y and u in (x, p) space in addition to isolines of y

and p in (x, u) space. Conversion between these two

representations is simply a matter of interpolation.

Figure 6 shows a plot of the solutions y(x, p) and u(x, p)

for f 5 7.3 3 1025 s21, a 5 500 km, and H 5 1500 m.

Figure 7 shows a similar plot with H 5 2500 m. As can be

seen from Fig. 7, when H 5 2500 m the layer 295 # u #

296 K is almost massless near the mountain crest. In

fact, for H greater than 2560 m, this layer does become

massless at the mountain crest. In other words, for this

particular mountain shape and far-field reference state,

the critical crest height is approximately Hcrit 5 2560 m.

Following an argument similar to that of Eliassen (1980),

a formula for the critical height can be obtained as fol-

lows. When H 5 Hcrit, (›P/›u) 5 (› ~P/›u) 1 (›P9/›u) 5 0

at the crest, or equivalently, using (8),

›P9

›u
5

g2

u2
BN2

B

at x 5 0 and u 5 uB. (19)

Using (18) for P9, with H replaced by Hcrit, we can re-

write (19) as

Hcrit 5
fa

NBI(a)
, (20)

where

I(a) 5
1ffiffiffiffi
p
p

ð‘

0

â2k̂2f1 1 exp[22k̂(uT 2 uB)/uB]g
1 1 k̂ 1 (1 2 k̂) exp[22k̂(uT 2 uB)/uB]

 !
exp(2â2k̂2/4) dk̂, (21)

with â 5 ( fN
B

/g)a denoting the dimensionless mountain

width and with k̂ 5 kuB. Figure 8 shows Hcrit as a function

of a for five different values of f. These results indicate

that broad mountains can be relatively high but still

below the critical crest height. They also indicate that

the crest height of the central Andes is supercritical.

For example, the actual crest heights shown in the two

panels of Fig. 2 are approximately 4200 m (at 218S) and

3700 m (at 308S), both of which are considerably higher

than the critical crest heights from the two curves la-

beled 208 and 308 latitude in Fig. 8.

In concluding this section we note that the wind and

mass fields displayed in Figs. 6 and 7 can also be inter-

preted as solutions of the following geostrophic adjust-

ment problem (Eliassen 1980). Initially, a stably stratified

fluid is in a state of rest over a level bottom surface on an

f plane. Over some arbitrary time interval, the bottom

topography is raised to its final shape and any transient

inertia–gravity waves are allowed to disperse away.

The final adjusted wind and mass fields are then deter-

mined via the potential vorticity invertibility principle

(11)–(15), with the bottom topography appearing in the
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lower boundary condition of this invertibility principle.

If the crest height of the topography is not raised above

the critical value, the lowest isentropic surface remains

attached to the topography. However, if the crest of the

topography is raised above the critical value, the to-

pography punctures the lowest isentropic surfaces so

that potential temperature now varies along the lower

boundary. In either case, the flow around the obstacle is

anticyclonic, a result of Coriolis turning of fluid that flows

away from the rising mountain crest. This anticyclonic,

topographically bound, balanced flow is not useful for

describing cyclonic flows such as those shown in Figs. 1–3.

Thus, in the next section we consider the related problem

of the balanced wind and mass fields near a topographic

feature that has been heated by radiative processes, re-

sulting in a cyclonic flow around the obstacle. This will

allow us to interpret the South American low-level jet

and the Chilean low-level jet as parts of the topographi-

cally bound motion associated with the PV anomaly

produced by solar heating of the Andes.

4. Numerical solution for the case of
a nonisentropic lower boundary

The analytical solutions discussed in section 3 are for

the special case in which the topographic surface is also

an isentropic surface. When isentropic surfaces intersect

the topographic surface, they can be considered to run

along the topographic surface with a pressure equal to the

surface pressure, thereby forming a massless layer with

infinite potential vorticity (i.e., ›p/›u / 0 and P / ‘).

Lorenz (1955) was the first to define a massless layer, not

in the context of potential vorticity dynamics but in the

context of available potential energy. Later, Bretherton

(1966) showed that a potential temperature gradient

along a boundary could be replaced by a boundary with

constant potential temperature provided a concentration

of potential vorticity very close to the surface is included.

The Bretherton concept of a dynamical massless layer has

been used in many later studies (e.g., Hoskins et al. 1985;

Thorpe 1985, 1986; Andrews 1983; Fulton and Schubert

1991; Schneider et al. 2003; Schneider 2005). The isen-

tropic surface that is just at the earth’s surface over both

the topographic feature and in the far field is labeled u 5

uB. Then, defining uS(x) as the actual value of potential

temperature on the topographic surface, the region uB #

u , uS(x) is the massless layer. When there is a massless

layer, the 1/P factor in the first term of (2) takes on the

value of zero (i.e., P / ‘) in the massless layer. This

introduces a variable coefficient effect that removes the

advantages of using Fourier transforms. Thus, in this

section, we solve a discretized (finite difference) version

of the invertibility problem using an iterative method. In

particular, we shall obtain solutions for the second and

third cases shown schematically in Fig. 4.

When the invertibility principle is solved using fi-

nite difference methods rather than Fourier transform

methods, it is unnecessary to separate the fields into a far-

field part and a deviation part, as was done in section 3.

Thus, returning to (2) and making use of the geostrophic

relation fy 5 (›M/›x) and the hydrostatic relation P 5

(›M/›u), we obtain (22) below, where the density r is

given in terms of M by (23). Note that the appearance of

r (as opposed to ~r) in the top line of (22) retains the

previously discussed weak nonlinearity, which is easily

FIG. 6. Cross-section plot of meridional wind y (shading) and

potential temperature u (solid lines) computed near a Gaussian

isentropic mountain with ‘‘width’’ a 5 500 km and crest height

H 5 1500 m. The potential temperature on the mountain surface

is 295 K, and the flow is anticyclonic. The contour intervals are

1 m s21 for y and 2 K for u. The extreme values of y are 111.5 m s21

on the western side (dark red) of the mountain and 211.5 m s21 on

the eastern side (dark blue).

FIG. 7. As in Fig. 6, but with crest height H 5 2500 m. The peak

values of y are 619.2 m s21.
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incorporated into the iterative method. The top line of

(22) holds above the massless layer, while in the massless

layer P / ‘ and the top line reduces to the bottom line

of (22). To obtain the lateral boundary conditions (24)

we have assumed that the far-field (i.e., x 5 6L) value of

M is equal to the specified function ~M(u). To obtain the

upper boundary condition (25) we have assumed that the

upper isentropic surface (u 5 uT) is also an isobaric sur-

face with a constant Exner function PT. To formulate the

lower boundary condition (26) we have applied the gen-

eral relation M 2 u(›M/›u) 5 f at u 5 uB. In summary,

the elliptic problem is

g

f urP
f 2 1

›2M

›x2

� �
1

›2M

›u2
5 0 for uS(x) , u # uT ,

›2M

›u2
5 0 for uB # u , uS(x),

(22)

r 5
p0

Ru

1

cp

›M

›u

 !
c

y
/R

, (23)

M 5 ~M(u) at x 5 6L, (24)

›M

›u
5 PT at u 5 uT , (25)

M 2 u
›M

›u
5 fS(x) at u 5 uB, (26)

where cy 5 cp 2 R is the specific heat at constant volume.

To solve (22)–(26) for M(x, u), we must specify the

constants uB, uT, PT, and L and the functions P(x, u),

uS(x), fS(x), and ~M(u). In section 3 we assumed that

uS(x) was equal to the constant uB, so there was no

massless layer. We also assumed that P(x, u) 5 ~P(u), so

the potential vorticity did not vary along u surfaces. With

these assumptions, the interior anticyclonic flow was

determined entirely by fS(x) and ~M(u).

Now consider the more general case where uS(x) 6¼ uB,

fS(x) 6¼ 0, P(x, u) 5 ~P(u) for uS(x) , u # uT, but P(x, u) /
‘ for uB # u , uS(x). In this case there is a massless layer

on the mountain slope. However, even in this case

there is a resting, horizontally homogeneous solution

if the functions uS(x), fS(x), and ~M(u) are specified in a

particular way. This particular specification can be

obtained by simply noting that M(x, uÞ5 ~M(u) for

uS(x) , u # uT is a resting solution. The Exner function

and the geopotential associated with this solution are

P(x, u) 5 ~P(u) and f(x, u) 5 ~f(u). If this geopotential

field is to match the topography, we must have

fS(x) 5 ~f[uS(x)]. (27)

In other words, if fS(x), uS(x), and ~f(u) are specified in

such a way that (27) is satisfied, the solutions of the el-

liptic problem (22)–(26) are y(x, u) 5 0 and P(x, u) 5 ~P(u)

for uS(x) , u # uT. For the far-field profile specified by

(10) and the Gaussian mountain specified by (16), the

constraint (27) can be rearranged to

uS(x) 5 uB 1 1
2N2H

g
e2x2/a2

� �1/2

. (28)

This argument provides us with a useful check on any

numerical procedure for solving (22)–(26). This ‘‘null’’

test case will be discussed later (Fig. 9). It is interesting

to note that even in this test case the wind field in the

massless layer does not vanish.

To discretize the problem (22)–(26) we introduce

the grid points (xj, uk) 5 (2L 1 jDx, uB 1 kDu) with j 5

0, 1, . . . , J and k 5 0, 1, . . . , K, where Dx 5 2L/J and Du 5

(uT 2uB)/K. Then we seek an approximate solution with

gridpoint values Mj,k satisfying the discrete equation

Aj,k[( f DxÞ2 1 Mj21,k 2 2Mj,k 1 Mj11,k]

1 Mj,k21 2 2Mj,k 1 Mj,k11 5 0, (29)

where the dimensionless coefficient Aj,k is defined by

Aj,k 5
g(Du)2

f ukrj,kPj,k(Dx)2
. (30)

The discretized versions of (25) and (26) are

Mj,K 2 Mj,K21 5 PTDu, (31)

FIG. 8. Critical height Hcrit of a Gaussian mountain as a function of

width at five latitudes.
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Mj,0 2
uB

Du
(Mj,1 2 Mj,0) 5 fS(xj). (32)

Note that (29) applies both outside and inside the

massless layer, with Aj,k 6¼ 0 outside the massless layer

and Aj,k 5 0 inside the massless layer. Also note that the

problem is nearly isotropic on the grid outside the

massless layer if Aj,k ’ 1, which can serve as a rough

guide for the choice of the ratio Du/Dx. Using typical

values of the quantities on the rhs of (30), we obtain the

rough guide (Du/Dx) ’ (1 K)/(57 km). For the numeri-

cal solutions presented here, we have chosen Dx 5 8 km

and Du 5 65/450 5 0:1444 K, resulting in a grid with J 5

750 and K 5 450 for the domain 23000 # x # 3000 km

and 295 # u # 360 K.

We solve the discrete equations (29)–(32) using the

following successive overrelaxation (SOR) procedure.

Denoting the current estimate of Mj,k by M̂j,k (not to be

confused with the ‘‘hat’’ notation in section 3 to denote

the Fourier component of a variable), and sweeping

through the grid in lexicographic order, we first compute

the current estimate of density from

r̂j,k 5
p0

Ruk

M̂j,k112M̂j,k21

cp2Du

 !
c

y
/R

, (33)

the current estimate of the dimensionless coefficient from

Âj,k 5

g(Du)2

f ukr̂j,kPj,k(Dx)2
if uS(xj) , uk , uT

0 if uB , uk , uS(xj)

8>><
>>: (34)

and then the current residual from

r̂j,k 5 M̂j,k21 1 M̂j,k11 2 2(1 1 Âj,k)M̂j,k

1 Âj,k[( f Dx)2
1 M̂j21,k 1 M̂j11,k]. (35)

The solution estimate is then updated by

M̂j,k ) M̂j,k 1
vr̂j,k

2(1 1 Âj,k)
, (36)

where v is the overrelaxation factor and (35) and (36)

are computed at the grid points 1 # j # J 2 1, 1 # k #

K 2 1. Finally, the top and bottom boundary points are

updated from the boundary conditions (31) and (32),

written in the form

M̂j, K ) M̂j, K21 1 PTDu for 1 # j # J 2 1, (37)

M̂j,0 )
(uB/Du)M̂j,1 1 fS(xj)

1 1 (uB/Du)
for 1 # j # J 2 1.

(38)

Equations (33)–(38) are iterated, starting with the initial

estimate M̂
j,k

5 ~M(u
k
). This initial estimate does not

change on the lateral boundaries j 5 0, J. To gauge the

convergence rate, we have monitored the norm of the

residual as iteration proceeds. Experience shows that,

when this norm has decreased by approximately two

orders of magnitude, the wind field no longer signifi-

cantly changes with further iterations. All of the figures

shown have been iterated until the residual has decreased

by more than two orders of magnitude. Based on nu-

merical tests, overrelaxation factors between 1.70 and

1.95 have been used.

The above iterative procedure determines the Mont-

gomery potential in the entire domain for a given surface

geopotential fS(x), a given surface potential temperature

FIG. 9. A null case (i.e., no flow) in which ~f(u), fS(x), and uS(x)

are specified such that (27) is satisfied. In this particular null case,
~f(u) is given by (10), fS(x) by (16), and uS(x) by (28). Black con-

tours are (top) isentropes and (bottom) isobars. The anticyclone

in the massless layer of the bottom panel (below the thick black

line) is not apparent in the top panel because the massless layer has

‘‘zero thickness’’ in (x, p) space.
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uS(x), and a given ~M(u). From the Montgomery potential,

the wind field can be easily recovered using geostrophic

balance, and the pressure field can be computed using the

hydrostatic approximation. As a ‘‘null’’ test of this nu-

merical procedure, we have specified ~M(u) according to

(9), fS(x) according to (16), and uS(x) according to (28).

This combination should result in no flow and a horizon-

tally homogeneous mass field outside the massless layer.

The numerical solution is shown in Fig. 9, which agrees

well with the expected result. Note that, when the solu-

tion is displayed in (x, u) space (bottom panel of Fig. 9),

there is an anticyclonic flow confined entirely to the

massless layer. This anticyclone does not appear when the

solution is displayed in (x, p) space (top panel).

Figure 10 shows the solution computed for an isen-

tropic ridge of the same height (2500 m) as the ridge

shown in Fig. 7. A comparison of these two figures shows

that the solution derived using Fourier transforms (Fig.

7) and the solution found with the above iterative pro-

cedure (Fig. 10) are similar, but the maximum winds in

Fig. 10 are 1.8 m s21 stronger than those in Fig. 7. These

figures are not expected to be identical because Fig. 7

was computed assuming the density was equal to the

far-field density (which depends only on u) while Fig. 10

was computed with density as a function of x and u. The

difference between Figs. 7 and 10 is primarily due to

the difference in the rhs of (6). Figure 7 results from

the assumptions (~r/r)/1 and ( ~P/P)/1 so that the rhs

of (6) vanishes. Figure 10 results from the assumption

( ~P/P)/1, so that the rhs of (6) becomes f (~r/r)[(r/~r) 2 1],

which is negative near the mountain crest since r , ~r

there. This negative rhs of (6) leads to a slightly stronger

anticyclone in Fig. 10 compared to Fig. 7. Note that the

errors caused by the assumption (~r/r)/1 are expected to

be less for cases in which the crest height is much smaller

than the critical crest height.

Figures 11–14 show the wind fields that result from the

simple cases represented schematically in Fig. 4. An is-

entropic ridge with a crest height of 1800 m is shown in

Fig. 11 and can be clearly identified by the fact that the

isentropes do not intersect the ridge and the flow is anti-

cyclonic. A flat lower boundary with a surface potential

temperature anomaly of 6 K is shown in Fig. 12, which

results in a 12.7 m s21 cyclonic flow. Figure 13 combines

these two forcing cases into a warm ridge with a crest

height of 1800 m and a surface potential temperature

anomaly of 6 K. Note that the isentropic lower surface

(Fig. 11) has anticyclonic flow anchored over the ridge,

but for the case of the flat lower boundary (Fig. 12) the

flow is cyclonic. The warm ridge with a surface poten-

tial temperature anomaly of 6 K has anticyclonic flow

(Fig. 13), but when the surface potential temperature

anomaly is increased to 12 K (Fig. 14), the flow becomes

FIG. 10. Meridional wind field (shading, warm colors are positive

and cool colors negative; the contour interval is 1 m s21) for an

isentropic lower boundary computed using SOR. The maximum

height of the Gaussian mountain is 2500 m and its width a 5

500 km. The maximum winds are 621.0 m s21.

FIG. 11. Meridional wind field (shading, 1 m s21 interval) for an

isentropic ridge with H 5 1800 m and a Gaussian width a 5

600 km. The flow is anticyclonic with ymax 5 615.4 m s21. Black

contours are (top) isentropes and (bottom) isobars.
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cyclonic and resembles more closely the flow structures

seen in Fig. 2. This demonstrates the competing influ-

ences of the purely orographic forcing and the surface

thermal forcing. Once the surface potential temperature

anomaly has grown strong enough to overcome the an-

ticyclonic flow associated with an isentropic obstacle, the

wind field produced by a warm ridge becomes cyclonic

and strengthens as the surface potential temperature

anomaly strengthens. It can also be shown that as the

width of the ridge increases for a given potential tem-

perature anomaly, the influence of the anomaly is spread

out and effectively acts as a weaker anomaly.

It is also apparent in (x, u) space that the isentropic

ridge case does not contain a massless layer, but for the

warm flat lower boundary (Fig. 12) and the warm ridge

(Figs. 13 and 14) a massless layer is present and marked

as the area below the thick black ‘‘surface’’ line. Pres-

sure in the massless layer is independent of u, as is clear

from the vertical isobars within the massless layers of

Figs. 12–14. Although the pressure is independent of u

in the massless layer, it does vary with x, resulting in a

nonzero wind field. The pressure and wind fields in the

massless layer do not have direct physical meaning. They

can be simply regarded as a consequence of formulating

(and discretizing) the invertibility principle on a domain

(and grid) that is uniform in (x, u) space, even though u is

not uniform on the lower boundary.

For the case of an isentropic lower boundary the po-

tential vorticity is uniform on each u surface. This leads

to a simple explanation for the wind field response to the

mountain as seen in Figs. 6, 7, and 10. Recall that, for

adiabatic flows, mass cannot cross isentropic surfaces,

which constrains how the mass field can adjust when the

isentropes are moved up or down. One of the primary

benefits of using isentropic coordinates is the simplicity

of the expression for potential vorticity. The denominator

of the potential vorticity is given by the pseudodensity

FIG. 12. Meridional wind field (shading, 1 m s21 interval) for a

flat lower surface having a 6-K warm potential temperature anom-

aly. The resulting winds have ymax 5 612.7 m s21. The massless

layer is indicated (top) in (x, p) space by the black region along the

lower boundary and (bottom) in (x, u) space by the thick black

line. Contour spacing for the pressure field in the massless layer is

1 hPa.

FIG. 13. Meridional wind field (shading, 1 m s21 interval) for

a heated ridge with a 6-K warm potential temperature anomaly,

a 5 600 km, H 5 1800 m, and ymax ’ 65 m s21 (above the mass-

less layer). The massless layer is indicated by (top) the black region

and (bottom) the thick black line. Contour spacing of isobars

(bottom) is 50 hPa except for lowest contour of 975 hPa.
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2(1/g)(›p/›u), which becomes smaller when the isen-

tropes are compressed, as occurs over the crest of an

isentropic ridge. Because the potential vorticity is uni-

form, the decrease in magnitude of the denominator im-

plies the numerator also must decrease. The only part of

the numerator that can decrease in magnitude is ›y/›x, so

a negative isentropic relative vorticity is required, which

is exactly what Figs. 6, 7, and 10 show. It is apparent that

the velocity gradient is greatest where the isentropes are

the most compressed. Similar reasoning can be applied

to the case of stretched isentropes with the only differ-

ence being the sign of the isentropic relative vorticity.

The structure of the isentropes for the case with a suf-

ficiently warm mountain crest (Fig. 14) is quite different.

Near the mountain the isentropes bend downward to-

ward the warm mountain crest. Isentropes that intersect

the mountain can be considered to run along the moun-

tain crest until they erupt on the other side of the moun-

tain. With this interpretation, there is an infinitesimally

thin massless layer of infinite PV on the mountain crest.

Then, by the invertibility principle and with uniform PV

along isentropes that do not intersect the mountain, there

is a cyclonic flow with a low-level jet on each side of the

mountain.

Each of Figs. 11–14 shows the wind maxima to be in

the lowest layers of the fluid and to decay rapidly in the

vertical and horizontal directions. This matches fairly

well with the basic characteristics of observed low-level

jets, although inclusion of surface frictional and boundary

layer effects in the theoretical argument is probably

necessary for accurate placement of the height of the jet

maxima. In agreement with the insights offered by the

invertibility principle, these figures show increased (de-

creased) mountain top vorticity when the isentropes are

stretched (compressed). These figures clearly indicate

that in the absence of other factors a sufficiently warm

mountain crest will result in a cyclonic wind field. It is also

clear that the jets of opposite sign on either side of the

ridge are two parts of the response to the forcing (i.e.,

a sufficiently warm ridge leads to a pair of LLJs that form

a cyclonic couplet). Finally, it is important to remember

that the balanced potential vorticity arguments given

here apply to the time-averaged flow and that there are

important superimposed diurnal oscillations (not accu-

rately captured by PV invertibility arguments) of the type

studied by Blackadar (1957), Holton (1967), and Jiang

et al. (2007).

5. Concluding remarks

The results presented here show that the thin sheet of

surface potential vorticity that is the result of the poten-

tial temperature anomalies along the heated topogra-

phy plays a key role in the dynamics of atmospheric

low-level jets. This conclusion has been reached by solv-

ing the invertibility principle for the balanced response

of a stratified fluid to forcing along the lower boundary.

Figure 4 schematically represents the three types of lower

boundary forcing we have studied here: an isentropic

ridge along the lower boundary, in which case fS(x) 6¼
0 and uS(x) 5 uB; a locally heated, flat lower boundary, in

which case fS(x) 5 0 and uS(x) 6¼ uB; and a heated ridge,

in which case fS(x) 6¼ 0 and uS(x) 6¼ uB. Isentropic ridges

produce an anticyclonic wind field. The closer the crest

height comes to the critical crest height, the tighter the

isentropes are packed over the ridge and the stronger the

corresponding wind field. In contrast, the case of a locally

heated flat lower boundary results in a cyclonic wind field.

When these two cases are combined into the case of a

heated ridge, the winds are reduced due to the competing

effects of the orography (fS) and the heating (uS). For

small potential temperature anomalies on the surface,

the influence of fS is dominant and the wind field is an-

ticyclonic. However, for surface potential temperature

anomalies that are larger and closer to those observed in

FIG. 14. As in Fig. 13, but with a 12-K warm potential temperature

anomaly. The isentropes now bend down toward higher pressure

and the flow is cyclonic with ymax 5 610.3 m s21.
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YOTC, the heating along the lower boundary is the

dominant effect, and the wind field is cyclonic. As an

example of these competing effects, the case shown in

Fig. 13, with a surface potential temperature anomaly

of 6 K, has an anticyclonic flow, while the case shown in

Fig. 14, with a surface potential temperature anomaly

of 12 K, has a cyclonic flow. Byerle and Paegle (2003)

have discussed the seasonal transition from cyclonic to

anticyclonic flow in the context of the Great Plains low-

level jet. The results presented here suggest that this

seasonal transition is due to the fall potential temper-

ature anomaly dropping below the critical value that is

needed for a cyclonic circulation.

Past studies of the South American LLJ (Vera et al.

2006) and the Chilean coastal LLJ (Jiang et al. 2010) have

treated these jets as isolated phenomena. This viewpoint

also dominates studies of the LLJs in North America (see

Holton 1967; Blackadar 1957; Wexler 1961; Jiang et al.

2007, etc.). The results presented here clearly show that

these pairs of LLJs can be attributed to the PV anomaly

that is generated by heating of the elevated terrain. Al-

though we have only treated fS(x) and uS(x) functions

that are symmetric about x 5 0, the YOTC observa-

tions shown in Figs. 1–3 indicate that surface potential

temperatures are colder on the west side owing to up-

welling in the eastern Pacific Ocean. Incorporation of

this asymmetry into the specified uS(x) leads to a corre-

sponding asymmetry in the LLJs (i.e., a stronger Chilean

LLJ).

Two limiting aspects of the present work are the f-plane

and y-independent assumptions. This raises the obvious

question as to whether it is possible to generalize the

present theory to balanced flows on the sphere. Such

a generalization has been given by Silvers (2011). The

specified topography and the specified potential temper-

ature on the lower boundary are then given by fS(l, m)

and uS(l, m), where l is the longitude and m is the sine

of the latitude. The relation between the mass field

and the wind field is assumed to be the local linear

balance (Schubert et al. 2009) condition M(l, m, u) 5

2Vmc(l, m, u), where c(l, m, u) is the streamfunction for

the nondivergent (i.e., zero isentropic divergence) part of

the flow. Then, the spherical generalization of (22) is

g

urP
(2Vm 1 =2c) 1 2Vm

›2c

›u2
5 0

for uS(l, m) , u # uT ,

2Vm
›2c

›u2
5 0 for uB # u , uS(l, m), (39)

where =2 is the two-dimensional (fixed u) Laplacian

operator on the sphere. With appropriate boundary

conditions, (39) constitutes an invertibility principle for

topographically bound flows on the sphere. Solution of

this three-dimensional elliptic problem allows treatment

of much more realistic topography fS(l, m) than was

treated in sections 3 and 4.
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APPENDIX

Analytic Solution Using Fourier Integral Transforms

To solve the invertibility problem (11)–(15) we use

Fourier integral transforms. For simplicity we assume

that the specified function fS(x) is symmetric in x so that

P9(x, u) is symmetric in x and y(x, u) is antisymmetric in

x. The Fourier sine transform pair for y(x, u) is

ŷ(k, u) 5
2

p

ð‘

0
y(x, u) sin(kx) dx, (A1)

y(x, u) 5

ð‘

0
ŷ(k, u) sin(kx) dk, (A2)

while the Fourier cosine transform pair for P9(x, u) is

P̂9(k, u) 5
2

p

ð‘

0
P9(x, u) cos(kx) dx, (A3)

P9(x, u) 5

ð‘

0
P̂9(k, u) cos(kx) dk. (A4)

A similar cosine transform pair exists for the surface

geopotential fS(x) and its transform f̂S(k).

We now wish to Fourier transform (11), (12), (14), and

(15). To Fourier transform (11) and (14) we multiply

them by cos(kx) and integrate over x from 0 to ‘,

thereby obtaining (A5) and (A7) below. To Fourier

transform (12) and (15) we multiply them by sin(kx) and

integrate over x from 0 to ‘, thereby obtaining (A6) and
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(A8) below. In summary, the Fourier transform of the

elliptic problem (11)–(15) is

kŷ 1
f u2

BN2
B

g2

 !
dP̂9

du
5 0, (A5)

f
dŷ

du
1 kP̂9 5 0 (A6)

with boundary conditions

P̂9 5 0 at u 5 uT , (A7)

u
dŷ

du
2 ŷ 5

k

f
f̂S(k) at u 5 uB. (A8)

As can be confirmed by direct substitution, the solutions

of (A5)–(A8) areA1

ŷ(k, u) 5 2
k

f
f̂S(k)

"
e2k(u2u

B
) 1 e2k(2u

T
2u

B
2u)

1 1 kuB 1 (1 2 kuB)e22k(u
T

2u
B

)

#
,

(A9)

uBNB

g
P̂9(k, u) 5 2

k

f
f̂S(k)

3

"
e2k(u2u

B
) 2 e2k(2u

T
2u

B
2u)

1 1 kuB 1 (1 2 kuB)e22k(u
T

2u
B

)

#
,

(A10)

where k(k) 5 gk/( fuBNB). The Fourier cosine transform

of (16) yields

f̂S(k) 5
gHaffiffiffiffi

p
p e2a2k2/4. (A11)

Using (A9), (A10), and (A11) in (A2) and (A4), we

obtain the final solutions (17) and (18).
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