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Large-scale tropical phenomena such as the Madden-Julian Oscillation (MJO) and El Niño-Southern Oscilla-
tion (ENSO) are o�en studied using the longwave approximation to equatorial β-plane theory. �is approxi-
mation involves the neglect of the (∂v/∂t) term in the meridional momentum equation. �e approximation
does not distort Kelvin waves, completely �lters inertia-gravity waves, is reasonably accurate for long Rossby
waves, but greatly distorts short Rossby waves. Here we present an improvement of the longwavemodel, based
on an approximation of the (∂v/∂t) term rather than its complete neglect. �e new model is similar to the
longwave model in the sense that it does not distort Kelvin waves and completely �lters inertia-gravity waves.
However, it di�ers from the longwave model in the sense that it accurately describes Rossby waves of all wave-
lengths, thus making it a useful tool for the study of a wider range of tropical phenomena than just the MJO
and ENSO. Althoughmost of the mathematical analysis performed here is in the context of equatorial β-plane
theory, we brie�y discuss how the ideas can be generalized to spherical geometry.
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1. Introduction

Numerical weather prediction and climate modeling are per-
formed almost exclusively with the primitive equations. �e
use of the primitive equations, rather than some simpler dy-
namical system, results from a desire to produce the most ac-
curate weather forecasts and the most realistic climate sim-
ulations. However, when the goal is physical understanding,
simpler dynamical models are o�en more useful. For exam-
ple, one of our important tools for understanding large-scale
tropical circulations is the longwave model (Gill 1980). �is
model �lters inertia-gravity waves and accurately describes
Kelvin waves and long Rossby waves. However, short Rossby
waves are badly distorted, as has been discussed by Stevens
et al. (1990, their Fig. 1a). �e Rossby wave frequencies for
the longwave approximation are only accurate for the �rst
few zonal wavenumbers as indicated by the dispersion curves,
which do not properly roll over for the higher wavenumbers.

�e goal of the present paper is to develop an improve-
ment of the longwave model—one that does not signi�cantly
distort short Rossby waves. However, before presenting the
detailed argument, it is useful to emphasize how the present
analysis di�ers from that of Matsuno (1966) and Gill (1980,
1982). �e fundamental di�erence lies in our use of the auxil-
iary potential φ, introduced by Ripa (1994). In particular, we
use the expression for the �ow in terms of this potential (un-
known at the time of Matsuno’s and Gill’s work) as a funda-
mental part of our approximation procedure. Without knowl-
edge of the advantages of a formulation based on the auxil-
iary potential φ, it is natural to focus attention on the variable
v. For example, elimination of u and ϕ from the linearized,
equatorial β-plane, shallow water primitive equations (2.1)–

(2.3) yields (see Gill 1982, page 435)

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
−

1
c2

∂2

∂t2
)∂v
∂t
+ β ∂v

∂x
= 0. (1.1)

�e dispersion relation associatedwith (1.1) is the classic cubic
equation

ε ( ν
2Ω
)
2
−m2

−

2Ωm
ν
= ε1/2(2n + 1), (1.2)

where ν is the frequency, m is the zonal wavenumber, n
is the meridional index, and ε = 4Ω2a2/c2 is Lamb’s pa-
rameter. Note that the m2, ε1/2(2n + 1), ε[ν/(2Ω)]2, and
2Ωm/ν terms in (1.2) come respectively from the (∂2/∂x2),
(∂2/∂y2)−(β/c)2 y2, (1/c2)(∂2/∂t2), and β(∂v/∂x) terms in
(1.1). If the (1/c2)(∂2/∂t2) term were missing from (1.1), the
v �eld would obey

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
)∂v
∂t
+ β ∂v

∂x
= 0, (1.3)

so that the dispersion relation would be

ν = − 2Ωm
m2
+ ε1/2(2n + 1) , (1.4)

which, as noted by both Matsuno (1966, his Eq. (10)) and Gill
(1982, his Eq. (11.6.8)), is an excellent approximation of the
low frequency (i.e., Rossby wave) solutions of the primitive
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equation dispersion relation (1.2). An important unanswered
question is the following: How do we arrive at the approxi-
mate dispersion relation (1.4) from an approximation of the
original shallow water equations (2.1)–(2.3)? One can argue
that, since the origin of the (1/c2)(∂2/∂t2) term in (1.1) is the
(∂v/∂t) term in (2.2), the approximation of the original shal-
low water equations should simply consist of the neglect of
the (∂v/∂t) in (2.2). However, this procedure of neglecting
(∂v/∂t) in (2.2) has an unwanted side e�ect—it also elimi-
nates the (∂2/∂x2) term in (1.1), resulting in

( ∂2

∂y2
−

β2 y2

c2
)∂v
∂t
+ β ∂v

∂x
= 0. (1.5)

�e dispersion relation associated with the longwave approx-
imation (1.5) is

ν = − 2Ωm
ε1/2(2n + 1) , (1.6)

which results in a short wave catastrophe for Rossby waves
because of the missing m2 term in the denominator. In Sec-
tion 3 we introduce a new �ltering approximation—one that
is based on a more subtle treatment of the (∂v/∂t) term.
Speci�cally, we approximate the (∂v/∂t) termby retaining the
(∂/∂t)(∂2φ/∂x2) part and neglecting the (∂/∂t)(∂2φ/∂t2)
part, which ultimately leads to the desired dispersion relation
(1.4). �us, it can be said that the analysis presented here im-
proves the longwave approximation through use of the auxil-
iary potential φ.

�e outline of the paper is as follows. In Section 2 we
formulate equatorial β-plane primitive equation dynamics in
terms of amaster equation for the non-Kelvin part of the �ow.
�is master equation, which describes both Rossby waves and
inertia-gravity waves, is identical to (1.1), but with v replaced
by φ. In Section 3 we introduce a �ltering approximation that
leads to a simpli�ed master equation. �is simpli�ed master
equation is �rst order in time and describes the Rossby waves
but �lters the inertia-gravity waves. In Sections 4 and 5 we
solve these two versions of the master equation using Fourier
transforms in x and Hermite transforms in y. �ese solutions
allow a detailed comparison of the eigenvalues and eigenfunc-
tions of the �lteredmodel with those of the primitive equation
model. �is comparison shows that the approximation pro-
cedure results in a nearly perfect dynamical �lter of inertia-
gravitywaveswithout any distortion ofKelvinwaves andmin-
imal distortion of Rossby waves. In Section 6 we compare the
�ltering approximation introduced in Section 3 with a more
traditional �ltering approximation that is based on a parti-
tioning of the �ow into irrotational and nondivergent parts.
Finally, in Section 7 we brie�y discuss how the �ltering tech-
nique of Section 3 can be generalized from the equatorial β-
plane to the sphere.

2. Primitive equation model

Consider small amplitude motions about a resting basic state
on the equatorial β-plane. We canwrite the linearized shallow

water equations as

∂u
∂t
− βyv + ∂ϕ

∂x
= 0, (2.1)

∂v
∂t
+ βyu + ∂ϕ

∂y
= 0, (2.2)

∂ϕ
∂t
+ c2 (∂u

∂x
+

∂v
∂y
) = 0, (2.3)

where u is the eastward component of velocity, v the north-
ward component, ϕ the perturbation geopotential, c the con-
stant gravity wave speed, and β the equatorial value of the
northward gradient of the Coriolis parameter. We seek so-
lutions of (2.1)–(2.3) on a domain that is in�nite in y and pe-
riodic over −πa ≤ x ≤ πa, where a is the Earth’s radius. �e
dependent variables u, v , ϕ are assumed to approach zero as
y → ±∞.

We shall solve (2.1)–(2.3) by partitioning the solution into
the non-Kelvin part and the Kelvin part, i.e.,

⎛
⎜
⎝

u
v
ϕ

⎞
⎟
⎠
=

⎛
⎜
⎝

uφ
vφ
ϕφ

⎞
⎟
⎠
+

⎛
⎜
⎝

uK
0
ϕK

⎞
⎟
⎠
, (2.4)

where the subscript φ has been used because the non-Kelvin
part of the �ow will be expressed (see (2.12)–(2.14) below) in
terms of the single potential φ. To accomplish this partition
and to express the non-Kelvin part entirely in terms of the po-
tential φ, we begin by combining (2.1) and (2.3) to obtain

( ∂
∂t
+ c

∂
∂x
) (ϕ + cu) = −c2 ( ∂

∂y
−

βy
c
) v , (2.5)

( ∂
∂t
− c

∂
∂x
) (ϕ − cu) = −c2 ( ∂

∂y
+

βy
c
) v . (2.6)

According to (2.5), the solution for ϕ + cu consists of a non-
Kelvin part obtained from v by integrating along the charac-
teristic x − ct = constant, plus a Kelvin part obtained from the
solution of (2.5) with zero right hand side. Similarly, accord-
ing to (2.6), the solution for ϕ − cu consists of a non-Kelvin
part obtained from v by integrating along the characteristic
x + ct = constant, plus a Kelvin part obtained from the solu-
tion of (2.6) with zero right hand side. �e solutions of the
homogeneous versions of (2.5) and (2.6) are

ϕK + cuK = Ke(x − ct, y), (2.7)

ϕK − cuK = Kw(x + ct, y), (2.8)

where Ke and Kw are arbitrary functions associated with east-
ward and westward propagation of information. �ese solu-
tions need to also satisfy (2.2) with v = 0, which can bewritten
as

( ∂
∂y
+

βy
c
)Ke + ( ∂

∂y
−

βy
c
)Kw = 0. (2.9)

If Ke = 0, the �rst term on the le� hand side of (2.9) van-
ishes, so that the Kw solution has the unacceptable behaviour
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e 1
2 (β/c)y2 and must be discarded. If Kw = 0, the second term

on the le� hand side of (2.9) vanishes, so that Ke has the ac-
ceptable behaviour e− 1

2 (β/c)y2 . �us, (2.7) and (2.8) become

ϕK + cuK = K(x − ct)e− 1
2 (β/c)y2 , (2.10)

ϕK − cuK = 0, (2.11)

where the function K(x) is determined from the initial con-
dition.

Now consider the non-Kelvin part of the �ow. Equations
(2.5) and (2.6) motivate the representations

ϕφ + cuφ = ( ∂∂t − c
∂
∂x
)( ∂

∂y
−

βy
c
)φ, (2.12)

vφ = −
1
c2
( ∂
∂t
− c

∂
∂x
)( ∂

∂t
+ c

∂
∂x
)φ, (2.13)

ϕφ − cuφ = ( ∂∂t + c
∂
∂x
)( ∂

∂y
+

βy
c
)φ. (2.14)

�e plausibility of (2.12)–(2.14) is easily checked by noting the
equality produced when they are substituted into (2.5) and
(2.6). When the Kelvin solution (2.10)–(2.11) and the non-
Kelvin representations (2.12)–(2.14) are used in (2.4), we ob-
tain

u = −( ∂2

∂x∂y
+

βy
c2

∂
∂t
)φ + 1

2c
K(x − ct)e− 1

2 (β/c)y2 , (2.15)

v = ( ∂2

∂x2
−

1
c2

∂2

∂t2
)φ, (2.16)

ϕ = ( ∂2

∂t∂y
+ βy ∂

∂x
)φ + 1

2
K(x − ct)e− 1

2 (β/c)y2 . (2.17)

If we substitute (2.15)–(2.17) back into the original shallowwa-
ter equations, we �nd that (2.1) and (2.3) are satis�ed, and that
(2.2) will also be satis�ed if φ is a solution of the equation
(Ripa 1994)

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
−

1
c2

∂2

∂t2
)∂φ
∂t
+ β ∂φ

∂x
= 0. (2.18)

If (2.18) can be solved for φ, the u, v , ϕ �elds can be easily re-
covered from (2.15)–(2.17) by di�erentiation of φ. Because of
its central role in the following analysis, we shall refer to (2.18)
as the “master equation."

Since the φ-�eld yields the non-Kelvin part of the �ow,
the master equation (2.18) describes the highly divergent �ow
associated with inertia-gravity waves as well as the quasi-
nondivergent, potential vorticity dynamics associated with
Rossby waves. In this regard, it is interesting to note that the
x-derivative of (2.18) yields the potential vorticity equation,
i.e.,

∂q
∂t
+ βv = 0, (2.19)

where
q =

∂v
∂x
−

∂u
∂y
−

βy
c2

ϕ (2.20)

is the potential vorticity anomaly. Using (2.15)–(2.17), the po-
tential vorticity anomaly can be expressed entirely in terms of
φ as

q = ( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
−

1
c2

∂2

∂t2
) ∂φ
∂x
+

β
c2

∂φ
∂t

. (2.21)

Similarly, the y-derivative of (2.18) yields the divergence equa-
tion, i.e.,

∂
∂t
(∂u
∂x
+

∂v
∂y
) − βy ( ∂v

∂x
−

∂u
∂y
) + βu +∇2ϕ = 0. (2.22)

In the next section we introduce a �ltering approxima-
tion that leads to a master equation that is �rst order in time
rather than third order in time. �e �ltering approximation
has no e�ect on theKelvin part of the �ow, i.e., it �lters inertia-
gravity waves without distorting Kelvin waves—an extremely
useful property for studying the MJO and ENSO.

3. Filtered model

�e longwave approximation of (2.1)–(2.3) is a �ltering ap-
proximation obtained by neglecting ∂v/∂t in (2.2). Here we
consider a more accurate �ltered model obtained by approxi-
mating (2.1)–(2.3) by

∂u
∂t
− βyv + ∂ϕ

∂x
= 0, (3.1)

∂ṽ
∂t
+ βyu + ∂ϕ

∂y
= 0, (3.2)

∂ϕ
∂t
+ c2 (∂u

∂x
+

∂v
∂y
) = 0, (3.3)

where ṽ is the approximation of v de�ned below. Since (3.1) is
identical to (2.1), and (3.3) is identical to (2.3), the argument
given between (2.4) and (2.17) remains essentially unchanged,
but with the inclusion of a representation for ṽ. �us, the rep-
resentations of u, v , ṽ , ϕ are

u = −( ∂2

∂x∂y
+

βy
c2

∂
∂t
)φ + 1

2c
K(x − ct)e− 1

2 (β/c)y2 , (3.4)

v = ( ∂2

∂x2
−

1
c2

∂2

∂t2
)φ, (3.5)

ṽ =
∂2φ
∂x2

, (3.6)

ϕ = ( ∂2

∂t∂y
+ βy ∂

∂x
)φ + 1

2
K(x − ct)e− 1

2 (β/c)y2 . (3.7)

Note that, although (3.4), (3.5), and (3.7) are formally iden-
tical to (2.15)–(2.17), the potential function φ in Section 2 is
a solution of the (primitive) master equation (2.18), while the
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potential function in the present section is a solution of the
(�ltered) master equation (3.8), given below.

If we substitute (3.4)–(3.7) into the approximate shallow
water equations (3.1)–(3.3), we �nd that (3.1) and (3.3) are sat-
is�ed, and that (3.2) will also be satis�ed if φ is a solution of
the (�ltered) master equation

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
) ∂φ
∂t
+ β ∂φ

∂x
= 0. (3.8)

Note that (3.8) is �rst order in time, while (2.18) is third or-
der in time. As we shall see, (3.8) �lters inertia-gravity modes
while retaining an accurate description of Rossby modes.

As in the primitive equation case, it is interesting to note
that the x-derivative of (3.8) yields the potential vorticity
equation, i.e.,

∂q
∂t
+ βv = 0, (3.9)

where

q =
∂ṽ
∂x
−

∂u
∂y
−

βy
c2

ϕ

= ( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
) ∂φ
∂x
+

β
c2

∂φ
∂t

(3.10)

is the potential vorticity anomaly, while the y-derivative of
(3.8) yields

∂
∂t
(∂u
∂x
+

∂ṽ
∂y
) − βy ( ∂v

∂x
−

∂u
∂y
) + βu +∇2ϕ = 0. (3.11)

Note that the �rst line of (3.10) is identical to (2.20), except
that v has been replaced by ṽ in the vorticity. In addition, note
that (3.11) is identical to (2.22), except that v has been replaced
by ṽ in the divergence.

It is also interesting to note that, by subtracting
(1/c2)(∂/∂t) of (3.8) from (∂/∂x) of (3.10), we obtain

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
) v = ∂q

∂x
, (3.12)

which can be considered to be a PV invertibility principle, i.e.,
a relation that can be used to compute the meridional wind v
from the potential vorticity q. Note that (3.9) and (3.12) form
a closed system in v and q. In fact, combining (∂/∂t) of (3.12)
with (∂/∂x) of (3.9), we obtain

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
) ∂v
∂t
+ β ∂v

∂x
= 0, (3.13)

which is identical to (3.8), except for v rather than φ. In Sec-
tion 5 we choose to proceed with the solution of (3.8) rather
than (3.13), since the (u, v , ṽ , ϕ)-�elds are so easily recover-
able from φ through the use of (3.4)–(3.7).

4. Solution of the master equation for the PE
model

We can solve the partial di�erential equation (2.18) by trans-
forming it into an ordinary di�erential equation in time, using
a Fourier transform in x and a Hermite transform in y. We
�rst take the Fourier transform of (2.18), de�ning the trans-
form pair

φm(y, t) = 1
2πa ∫ πa

−πa
φ(x , y, t)e−imx/adx , (4.1)

φ(x , y, t) =
∞

∑
m=−∞

φm(y, t)e imx/a , (4.2)

where the integer m denotes the zonal wavenumber. In this
way, (2.18) reduces to

⎧⎪⎪⎨⎪⎪⎩
m2
−ε1/2 ( ∂2

∂ ŷ2
− ŷ2)+ ε

(2Ω)2
∂2

∂t2

⎫⎪⎪⎬⎪⎪⎭
∂φm

∂t
= 2Ωimφm , (4.3)

where
ε = 4Ω2a2

c2
(4.4)

is Lamb’s parameter and ŷ = (β/c)1/2 y = ε1/4(y/a) is the di-
mensionless northward coordinate.

We now convert (4.3) into an ordinary di�erential equa-
tion by transforming in ŷ. We use the transform pair

φmn(t) = ∫ ∞
−∞

φm( ŷ, t)Hn( ŷ)d ŷ, (4.5)

φm( ŷ, t) =
∞

∑
n=0

φmn(t)Hn( ŷ), (4.6)

where the Hermite functions Hn( ŷ) (n = 0, 1, 2, . . .) are re-
lated to the Hermite polynomials Hn( ŷ) (n = 0, 1, 2, . . .) by
Hn( ŷ) = (π1/22nn!)−1/2Hn( ŷ)e− 1

2 ŷ
2
. �e Hermite functions

Hn( ŷ) satisfy the recurrence relation

ŷHn( ŷ) = (n + 12
)
1/2
Hn+1( ŷ) + (n2 )

1/2
Hn−1( ŷ), (4.7)

and the derivative relation

dHn( ŷ)
d ŷ

= −(n + 1
2
)
1/2
Hn+1( ŷ) + (n2 )

1/2
Hn−1( ŷ). (4.8)

�e �rst two Hermite functions areH0( ŷ) = π−1/4e− 1
2 ŷ

2
and

H1( ŷ) = 21/2π−1/4 ŷe− 1
2 ŷ

2
, from which all succeeding struc-

ture functions can be computed using the recurrence relation
(4.7). Plots of Hn( ŷ) for n = 0, 1, 2, 3, 4 are shown in Fig. 1.
Note that (4.5) can be obtained throughmultiplication of (4.6)
by Hn′( ŷ), followed by integration over ŷ and use of the or-
thonormality relation

∫ ∞
−∞

Hn( ŷ)Hn′( ŷ)d ŷ =
⎧⎪⎪⎨⎪⎪⎩
1 n′ = n,
0 n′ ≠ n.

(4.9)
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Figure 1. The Hermite functions Hn( ŷ) for n = 0, 1, 2, 3, 4. These satisfy the orthonormality condition (4.9) and serve as the basis
functions for the transform pair (4.5) and (4.6).

Multiplying (4.3) by Hn( ŷ) and integrating over ŷ (i.e.,
taking the Hermite transform of (4.3)) we obtain the third or-
der ordinary di�erential equation

{m2
+ ε1/2(2n+ 1)+ ε

(2Ω)2
d2

dt2
}dφmn

dt
= 2Ωimφmn . (4.10)

In the derivation of (4.10) we have used two integrations
by parts (with vanishing boundary terms) and the fact that
Hn( ŷ) is an eigenfunction of the operator (d2/d ŷ2 − ŷ2), i.e.,
(d2/d ŷ2− ŷ2)Hn( ŷ) = −(2n+1)Hn( ŷ).�e solution of (4.10)
is

φmn(t) =
2
∑
r=0

φmnr(0)e−iνmnr t , (4.11)

where the dimensionless frequencies ν̂mnr = νmnr/(2Ω) are
solutions of

εν̂2mnr −m
2
−

m
ν̂mnr

= ε1/2(2n + 1) (4.12)

for n = 0, 1, 2,⋯, with r = 0, 1, 2 serving as an index for the
three roots of the dispersion relation (4.12). �us, using (4.2),
(4.6), and (4.11), we conclude that the solution of the master
equation (2.18) is

φ(x , y, t) =
∞

∑
m=−∞

∞

∑
n=0

2
∑
r=0

φmnr(0)Hn( ŷ)e i(mx/a−νmnr t) .

(4.13)
Using the solution (4.13) in the right hand sides of (2.15)–
(2.17), and then making use of (4.7) and (4.8), we obtain the
�nal solution

⎛
⎜
⎝

u
v
ϕ

⎞
⎟
⎠
=

∞

∑
m=−∞

∞

∑
n=0

2
∑
r=0

φmnr(0)
⎛
⎜
⎝

umnr
vmnr
ϕmnr

⎞
⎟
⎠
e i(mx/a−νmnr t)

+

1
2

⎛
⎜
⎝

c−1
0
1

⎞
⎟
⎠
K(x − ct)e− 1

2 ε
1/2(y/a)2 ,

(4.14)
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where

umnr(y) = iε1/4

a2

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
(ε1/2 ν̂mnr +m)Hn+1( ŷ)

+ (n
2
)
1/2
(ε1/2 ν̂mnr −m)Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
(4.15)

vmnr(y) = 1
a2
(εν̂2mnr −m

2)Hn( ŷ) (4.16)

ϕmnr(y) = icε1/4

a2

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
(ε1/2 ν̂mnr +m)Hn+1( ŷ)

− (n
2
)
1/2
(ε1/2 ν̂mnr −m)Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
(4.17)

are the eigenfunctions (Matsuno 1966) for the Rossby modes
(r = 0) and the inertia-gravity modes (r = 1, 2).

�e dimensionless frequencies ν̂mnr , obtained from the
primitive equation dispersion relation (4.12) with ε = 500
(which corresponds to c ≈ 41.6 ms−1), are shown by the solid
circles in Fig. 2. Note that we have chosen to plot the n = 0
modes that are usually discarded in equatorial β-plane theory.
�e reason is as follows. When n = 0, the cubic dispersion re-
lation (4.12) can be factored to yield (ε1/2 ν̂+m)(ε1/2 ν̂2−mν̂−
1) = 0. In Matsuno’s (1966) original argument, which deals
with solutions of an equation for v, the ε1/2 ν̂ = −m eigenval-
ues and their associated eigenfunctions for v were justi�ably
discarded. In the present argument, which deals with solu-
tions of an equation for φ, the ε1/2 ν̂ = −m eigenvalues and
their associated eigenfunctions for φ can either be discarded
or retained in the summation (4.13). To see this, �rst note that
their contribution (using the index r = 0) to the summation
(4.13) is

π−1/4e−
1
2 (β/c)y2

∞

∑
m=−∞

φm ,0,0(0)e i(m/a)(x+c t)

≡ e−
1
2 (β/c)y2F(x + ct) ≡ G(x + ct, y).

(4.18)

Referring to the operators in the large parentheses of (2.15)–
(2.17), now note that

( ∂2

∂x∂y
+

βy
c2

∂
∂t
)G = 0, (4.19)

( ∂2

∂x2
−

1
c2

∂2

∂t2
)G = 0, (4.20)

( ∂2

∂t∂y
+ βy ∂

∂x
)G = 0. (4.21)

�us, (4.18) makes no contribution to the u, v , ϕ �elds, so that
G(x + ct, y) represents a gauge transformation of the φ-�eld
that leaves the u, v , ϕ �elds unchanged. Another way of seeing
this is to simply note that the right hand sides of (4.15)–(4.17)

vanish when n = 0 and ε1/2 ν̂m ,0,0 = −m. For convenience in
understanding the �ltering properties discussed in the next
section, we have included the ε1/2 ν̂m ,0,0 = −m root in Fig. 2,
with the label “n = 0 (gauge)." Finally, for completeness we
have also plotted (open circles) the Kelvin wave frequencies,
which are given by ε1/2 ν̂ = m. However, it should be remem-
bered that it is only the non-Kelvin part of the �ow that is
described by the master equation (2.18) and the potential φ.

5. Solution of the master equation for the filtered
model

�e solution of (3.8) proceeds in a manner analogous to the
solution of (2.18). A�er transforming in x and y, we obtain
the �rst order ordinary di�erential equation

dφmn

dt
=

2Ωim
m2
+ ε1/2(2n + 1)φmn . (5.1)

�e solution of (5.1) is

φmn(t) = φmn(0)e−iνmn t , (5.2)

where the dimensionless frequency ν̂mn = νmn/(2Ω) is given
by

ν̂mn = −
m

m2
+ ε1/2(2n + 1) (5.3)

for n = 0, 1, 2,⋯, which is an approximation of the low fre-
quency solutions of the cubic equation (4.12). �us, we con-
clude that the solution of (3.8) is

φ(x , y, t) =
∞

∑
m=−∞

∞

∑
n=0

φmn(0)Hn( ŷ)e i(mx/a−νmn t) . (5.4)

Using the solution (5.4) in the right hand sides of (3.4), (3.5)
and (3.7), we obtain

⎛
⎜
⎝

u
v
ϕ

⎞
⎟
⎠
=

∞

∑
m=−∞

∞

∑
n=0

φmn(0)
⎛
⎜
⎝

umn(y)
vmn(y)
ϕmn(y)

⎞
⎟
⎠
e i(mx/a−νmn t)

+

1
2

⎛
⎜
⎝

c−1
0
1

⎞
⎟
⎠
K(x − ct)e− 1

2 ε
1/2(y/a)2 ,

(5.5)

where

umn(y) = iε1/4

a2

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
(ε1/2 ν̂mn +m)Hn+1( ŷ)

+ (n
2
)
1/2
(ε1/2 ν̂mn −m)Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
(5.6)

vmn(y) = 1
a2
(εν̂2mn −m

2)Hn( ŷ), (5.7)

ϕmn(y) = icε1/4

a2

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
(ε1/2 ν̂mn +m)Hn+1( ŷ)

− (n
2
)
1/2
(ε1/2 ν̂mn −m)Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
(5.8)
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Figure 2. The dimensionless frequencies ν̂mnr , determined from the primitive equation dispersion relation (4.12) with ε = 500 and
n = 0, 1, 2,⋯, 9, are shown with solid circles. Although they make no contribution to the physical fields u, v , ϕ, the n = 0modes labelled
‘‘gauge" are included here since they help in the interpretation of Fig. 3. For completeness, the dimensionless Kelvin wave frequencies
ν̂ = ε−1/2m are also shown (open circles).
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are the eigenfunctions for the Rossby modes. In compar-
ing the balanced model results (5.5)–(5.8) with the primitive
equation model results (4.14)–(4.17), we note that the sub-
scripts r and the sum over r are missing in (5.5)–(5.8) since
inertia-gravity waves have been �ltered. �e eigenfunctions
in (5.6)–(5.8) are accurate approximations to the Rossby wave
eigenfunctions in (4.15)–(4.17) since the only di�erence is
that ν̂mn is computed from (5.3) for use in (5.6)–(5.8), while
ν̂mn0 is the low frequency solution of (4.12) for use in (4.15)–
(4.17). �e �ltered dimensionless frequencies (5.3) are plotted
in Fig. 3, along with the Kelvinmode ε1/2 ν̂ = m, for the Lamb’s
parameter ε = 500. A comparison of Figs. 2 and 3 shows how
accurately this approximation represents Rossby waves. Note
the lack of inertia-gravity waves and that the n = 0 modes
in Fig. 3 can be interpreted as approximations of the low fre-
quency n = 0 Rossby modes for large ∣m∣ and approximations
of the low frequency n = 0 gauge modes for small ∣m∣. Since
the gauge modes in Fig. 2 make no contribution to u, v , ϕ for
the primitive equation model, we may expect that the “ap-
proximate gauge modes" in Fig. 3 (i.e., the n = 0 modes for
m = −1,−2,−3) make small contributions to u, v , ϕ in the �l-
tered model.

In summary, we have introduced a new equatorial β-plane
�lteredmodel that retains Rossby and Kelvin modes, and that
acts as an e�ective �lter of inertia-gravity modes. �e new �l-
teredmodel leads to the Rossbywave dispersion relation (5.3),
which is more accurate than the one obtained from the long-
wave approximation. In fact, the Rossby wave dispersion re-
lation obtained from the longwave approximation is similar
to (5.3), but does not contain the m2 factor in the denomi-
nator of (5.3). �us, the longwave approximation leads to a
catastrophe for high wavenumber Rossby waves.

6. Comparison with a traditional filtering method

�e �ltering approximation introduced in Section 3 is based
on a partitioning of the �ow intoKelvin and non-Kelvin parts.
More traditional �ltering approximations (e.g., Schubert and
Masarik 2006) are based on a partitioning of the �ow into ir-
rotational and nondivergent parts, i.e., u = ∂χ/∂x − ∂ψ/∂y
and v = ∂χ/∂y + ∂ψ/∂x, where χ is the velocity potential and
ψ is the streamfunction. �is partitioning allows us to write
the potential vorticity equation (2.19) as

∂
∂t
(∇2ψ − βy

c2
ϕ) + β (∂χ

∂y
+

∂ψ
∂x
) = 0, (6.1)

and the divergence equation (2.22) as

∂
∂t
∇

2 χ +∇ ⋅ (∇ϕ − βy∇ψ) + β ∂χ
∂x
= 0. (6.2)

�e “local linear balance approximation" of (6.1) and (6.2) is
obtained by neglecting the ∂χ/∂y term in (6.1), neglecting the
�rst and last terms on the le� hand side of (6.2), and treating
the βy factor in the middle term of (6.2) as slowly varying.

�ese approximations lead to ∇2(ϕ − βyψ) = 0, from which
it follows that ϕ = βyψ and

( ∂2

∂x2
+

∂2

∂y2
−

β2 y2

c2
) ∂ψ
∂t
+ β ∂ψ

∂x
= 0. (6.3)

Note that (6.3) is formally identical to (3.8) and (3.13), but that
the dependent variable in (6.3) is the streamfunction ψ, while
the dependent variable in (3.8) is the non-Kelvin potential φ
and the dependent variable in (3.13) is the meridional veloc-
ity component v. A result of the identical form of (3.8), (3.13),
and (6.3) is that the eigenvalue relation (5.3) results from each.
However, the eigenfunctions for the wind andmass �elds that
are obtained from (6.3) are not as accurate as those obtained
from (3.8) and (3.13), as we shall now see.

Using the same Fourier and Hermite transform methods
introduced in Sections 4 and 5, we can show that the solution
of (6.3) is

ψ(x , y, t) =
∞

∑
m=−∞

∞

∑
n=0

ψmn(0)Hn( ŷ)e i(mx/a−νmn t) , (6.4)

where the nondimensional frequency ν̂mn = νmn/(2Ω) is
given by (5.3). Using the solution (6.4) in uψ = −∂ψ/∂y,
vψ = ∂ψ/∂x, and ϕ = βyψ, we obtain

⎛
⎜
⎝

uψ
vψ
ϕ

⎞
⎟
⎠
=

∞

∑
m=−∞

∞

∑
n=0

ψmn(0)
⎛
⎜
⎝

Umn(y)
Vmn(y)
Φmn(y)

⎞
⎟
⎠
e i(mx/a−νmn t) , (6.5)

where

Umn(y) = ε1/4

a

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
Hn+1( ŷ) − (n2 )

1/2
Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
(6.6)

Vmn(y) = im
a
Hn( ŷ), (6.7)

Φmn(y) = cε 1
4

a
ŷHn( ŷ)

=
cε1/4

a

⎡⎢⎢⎢⎢⎣
(n + 1

2
)
1/2
Hn+1( ŷ) + (n2 )

1/2
Hn−1( ŷ)

⎤⎥⎥⎥⎥⎦
.

(6.8)

Equation (6.5) is an approximation of the top line in (5.5),
and hence also an approximation of the Rossby wave part of
the top line in (4.14). �is is easily con�rmed by noting that
the top line in (5.5) reduces to (6.5) if ε1/2 ν̂mn + m → m and
i(m/a)φmn(0) → ψmn(0). �e approximation (6.5) is not
as accurate as the approximation (5.5), a fact that is most ap-
parent in the geopotential �eld. For example, note that (6.8)
yields ϕ = 0 at y = 0 for all n, so that the approximate Rossby
wave eigenfunctions (6.8) have no zonal pressure gradient
force at the equator. �is is not a property of the primitive
equation eigenfunctions (4.17) or the approximate eigenfunc-
tions (5.8). A more detailed comparison of such di�erences
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Figure 3. The dimensionless frequencies ν̂mn , determined from the filtered model dispersion relation (5.3) with ε = 500 and
n = 0, 1, 2,⋯, 9, are shown with solid circles. For completeness, the dimensionless Kelvin wave frequencies ν̂ = ε−1/2m are also shown
(open circles). In comparing this figure with the primitive equation result shown in Fig. 2, note that all n ≥ 1 inertia-gravity modes have
been filtered, all n ≥ 1 Rossby modes have been retained, high frequency n = 0 gauge modes and inertia-gravity modes have been
filtered, while low frequency n = 0 gauge modes and Rossby modes have been retained. Also note that the filtering procedure has no
effect on the Kelvin modes.
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for a forced problem can be found in Schubert and Masarik
(2006, their Figs. 3 and 8). �e important conclusion to be
noted here is that the �ltered model of Section 3 is much
preferable to the �ltered model of this section, not only be-
cause of more accurate Rossby wave eigenfunctions but also
because of the inclusion of Kelvin waves.

7. Concluding remarks

Filtered models are usually derived by partitioning the �ow
into nondivergent and irrotational parts, which are expressed
in terms of the streamfunction and velocity potential. �en
certain approximations are introduced into the divergence
and vorticity equations, with the result that inertia-gravity
waves are �ltered. Such procedures have the disadvantage
that, in the process of �ltering the inertia-gravity waves, the
Kelvin waves are distorted (e.g., Moura 1976). �is distor-
tion of the Kelvin waves makes such models of limited use in
studying the MJO and ENSO, which require accurate Rossby
wave dynamics for the �ow on the west side of the heat souce
and accurate Kelvin wave dynamics for the �ow on the east
side the heat source.

In the present paper we have taken a di�erent approach
to the �ltering problem. We have partitioned the �ow into
Kelvin and non-Kelvin parts, and expressed the non-Kelvin
part in terms of a single potential φ, which satis�es a master
equation. We have then approximated the master equation in
such a way that the inertia-gravity waves are �ltered and the
Rossby waves are accurately described. �is approach to �l-
tering the inertia-gravity waves leaves theKelvinwaves undis-
torted and results in a �lteredmodel that is useful for studying
a wide range of tropical phenomena, including not only the
MJO and ENSO but also smaller scale phenomena in which
short Rossby wave energy is signi�cant.

As was discussed in Section 4, the representation of the
non-Kelvin part of the �ow in terms of the potential φ is not
unique, since the gauge transformation φ → φ +G(x + ct, y)
leaves the u, v , ϕ �elds unchanged (i.e., the u, v , ϕ �elds are
gauge invariant with respect to G(x + ct, y)). �is prop-
erty of φ should not be taken as an argument against its use-
fulness, since there are many analogous situations in other
branches of physics. For example, inMaxwell’s theory of elec-
tromagnetism the electric and magnetic �elds can be written
in terms of the scalar potential Φ and the vector potential A
as E = −∇Φ − ∂A/∂t and B = ∇ × A. For a general scalar
function Ψ, the gauge transformation Φ → Φ + ∂Ψ/∂t and
A → A − ∇Ψ leaves the E and B �elds unchanged (i.e., the E
and B �elds are gauge invariant). �us, in analogy with elec-
tromagnetism, it is important to keep in mind that the φ �eld
cannot be measured directly, but can only be inferred from
the u, v , ϕ �elds to within the gauge �eld G(x + ct, y).

Canwe generalize the previous arguments to include forc-
ing, dissipation, continuous strati�cation, nonlinearity, and
spherical geometry? It appears that all these generalizations
are possible, although some subtleties are involved. For ex-

ample, the generalization to the sphere requires performing
an analysis similar to that done for the equatorial β-plane in
(2.1)–(2.18). On the sphere, this analysis requires an approx-
imation if one is to obtain an analytically tractable master
equation. To understand this, consider substituting the repre-
sentation (2.12) into the le� hand side of (2.5) and the repre-
sentation (2.13) into the right hand side of (2.5). Because of the
commutative property of the di�erential operators, the use-
fullness of the representations (2.12) and (2.13) is con�rmed.
On the sphere, this commutative property is lost because of
the convergence of the meridians. �us, the spherical ana-
logue of the analysis (2.1)–(2.18) involves an approximation
that depends on the slow variation of cos(latitude) factors.
With this approximation we are led to the following (dimen-
sional) master equation on the sphere:

(∇2
−

εµ2

a2
−

1
c2

∂2

∂t2
) ∂φ
∂t
+

2Ω
a2

∂φ
∂λ
= 0, (7.1)

where λ is the longitude, µ is the sine of the latitude, and
∇

2 is the horizontal Laplacian operator in spherical coor-
dinates. If (7.1) can be solved for φ, then the u, v , ϕ �elds
can be recovered by di�erentiation of φ. As before, the
φ-�eld yields the non-Kelvin part of the �ow. Wave solu-
tions of (7.1) are of the form φ(λ, µ, t) = Smn(ε; λ, µ)e−iνmn t ,
where the spheroidal harmonics Smn(ε; λ, µ) satisfy
(a2∇2

− εµ2)Smn = −αmn(ε)Smn , with −αmn(ε) denot-
ing the spheroidal harmonic eigenvalue. When ε = 0, the
spheroidal harmonics reduce to the spherical harmonics, with
the eigenvalues αmn(0) = n(n + 1). When the spheroidal
harmonic wave form is substituted into (7.1) we obtain the
primitive equation dispersion relation

εν̂2mn −
m
ν̂mn
= αmn(ε), (7.2)

where ν̂mn = νmn/(2Ω) is the dimensionless frequency.
Equation (7.2) is the spherical generalization of (4.12).

As in the equatorial β-plane case, the �ltered version of
(7.1) is

(∇2
−

εµ2

a2
) ∂φ
∂t
+

2Ω
a2

∂φ
∂λ
= 0. (7.3)

Searching for solutions of (7.3) having the spheroidal har-
monic form, we obtain the Rossby-Haurwitz wave dispersion
relation

ν̂mn = −
m

αmn(ε) , (7.4)

which is the spherical version of (5.3). �e dispersion rela-
tion (7.4) is known (see Schubert et al. 2009) to accurately
approximate the low frequency modes found numerically by
Longuet-Higgins (1968) for the shallow water primitive equa-
tions on the sphere. When ε = 0, (7.4) reduces to ν̂mn =

−m/[n(n + 1)], which is the well-known result for nondiver-
gent barotropic Rossby-Haurwitz waves on the sphere.

From this brief discussionwe conclude that the basic ideas
developed in the context of equatorial β-plane theory can in-
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deed be generalized to the sphere. A more complete analysis
of the spherical case is the topic of current research.
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