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A B S T R A C T

Accurate and rapid tropical cyclone (TC) monitoring is crucial for precise forecasting and appropriate response to 
mitigate socio-economic damages. Geostationary satellite-based observations are the only tools that allow 
continuous monitoring of TCs throughout their entire lifetime, from formation to dissipation. However, owing to 
the diversity of TC structures, the automatic extraction of TC information using geostationary satellite-based 
cloud-top observations is still challenging. To address this limitation, several deep-learning-based approaches 
for extracting TC information have been developed. Here, we propose a novel deep learning-based TC center 
estimation approach using real-time geostationary satellite observations. To reduce computational costs while 
capturing both the entire TC structure and high-resolution spiral patterns, we propose a multi-task feature 
transfer deep learning-based TC center estimation (MFT–TC). This model effectively considers both the entire 
spiral band and focuses on specific local characteristics of TC while maintaining high computing efficiency, 
reducing computing costs by 47 %). Compared to the conventional single-CNN-based TC center determination 
model, which has been widely used in previous studies, the proposed model achieved significant improvements, 
with skill score increases ranging from 12 % to 39 %. Additionally, since there are significant structural dif
ferences between TCs with and without an eye, MFT–TC was evaluated under two different schemes based on the 
training sets: scheme 1, which uses separate training datasets depending on whether the TC has an eye (MFT–TC- 
div) and scheme 2, which uses all TC cases combined (MFT–TC-whl). Evaluation results showed scheme 1-based 
MFT–TC achieved a 14.8 % improvement over scheme 2-based MFT–TC, suggesting that separating training 
samples based on TC eye presence enhances the accuracy of TC center estimation. Furthermore, using the 
explainable artificial intelligence (XAI) approach, we demonstrated that MFT–TC efficiently captures both 
overall cyclonic structures and center-specific spatial characteristics to estimate the TC center accurately.

1. Introduction

Tropical cyclones (TCs) induce critical socioeconomic damage owing 
to severe winds and heavy rainfall and the uncertainty of predictability 
has been increased due to climate change (Knapp et al., 2010; Maha
patra et al., 2018; Forbis et al., 2024; Wu et al., 2024). Although 
monitoring TCs is crucial for enhancing forecasting accuracy and 
minimizing the resulting damage, instruments to real-time monitor the 
whole lifetime of a TC are lacking. Geostationary satellites are the sole 

means of observing TCs during their entire lifecycle, from formation to 
dissipation. The Dvorak technique (Dvorak, 1975; 1984), a method for 
analyzing the cyclonic patterns of TCs using geostationary 
satellite-based infrared channels, has been widely utilized to determine 
TC centers in operation. However, the operational method has limita
tions in that it is difficult to exclude the subjectivity of forecasters and 
requires analysis time to obtain TC information.

To mitigate these limitations, several automatic TC center estimation 
methods using geostationary satellites have been proposed, which are 
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divided into two approaches: 1) statistical methods and 2) deep 
learning-based methods. For statistical approaches, some methods uti
lize the gradient of brightness temperatures (BTs) around the TC system 
(e.g., Zheng et al., 2019; Hu et al., 2021) or consider highly convective 
cyclonic patterns around the TC center (e.g., Lu et al., 2019; Shin et al., 
2022). Assuming a highly convective region in the low-BT pixels in 
long-wave infrared (IR) channel-based observations, the former con
siders the gradient of BTs around neighboring pixels and finds that the 
highest concentrated region is the TC center. In contrast, the latter 
considers the intensity-wise most convective spiral band region around 
the TC center and identifies the most fitted region as the TC center. 
These statistical approaches are advantageous in terms of providing 
intuitive knowledge of how the center was determined. However, they 
tend to optimize for ideal TC cases, and limitations exist in improving 
the performance of outlier cases.

As an alternative, several deep-learning-based TC center estimation 
approaches have been proposed (e.g., Ho et al., 2024; Wang et al., 2024; 
Zhang et al., 2024). These approaches widely use convolutional neural 
networks (CNNs) to determine the center locations from satellite-based 
TC observations. They efficiently considered the horizontal pattern of 
TCs for determining centers by analyzing not only center-closed regional 
characteristics but also the outflows of TCs. This mitigates the limita
tions of statistical approaches. However, it inevitably requires that the 
input datasets combine entire TC systems to analyze the location of the 
TC centers. That is, as the spatial resolution of geostationary satellite 
observations improves, the size of the input datasets inevitably 

increases, leading to a high computational capacity. When the size of the 
input dataset increases, the number of parameters required to train the 
neural networks for optimization rises exponentially. Several studies (e. 
g., Shin et al., 2022; Wu et al., 2023; Ho et al., 2024) have demonstrated 
that the performance of automatic TC center determination gets worse 
as the TC gets weaker, implying that center determination is hard when 
the TC structure is not ideal. Therefore, it is curial that both of specific 
characteristics of central region and synoptic structural characteristics 
of whole TC system should be considered simultaneously.

In this study, a multi-task feature transfer deep learning (MFT) model 
for TC center estimation is proposed to mitigate the exponentially 
increasing computing cost while considering the entire TC structure. The 
model consists of three CNN-based modules, all of which have the same 
input dataset size. The first module analyzes the entire horizontal TC 
structure using a low spatial resolution; the second module focuses on 
the inner region of the TC, employing a medium spatial resolution; the 
last module concentrates on centrally focused observations utilizing the 
highest spatial resolution. In this model, the features of the upper 
module are transferred to the bottom module to transport knowledge of 
the surrounding spatial patterns, which enables them to interconnect 
with each other in the entire network. The proposed approach was 
conducted using two schemes: 1) training all TC cases and 2) dividing 
them into two TC cases based on whether they contain eyes. Through 
quantitative evaluation of each scheme, the most optimal approach 
would be proposed. Furthermore, using heat map, which is one of the 
explainable AI (XAI) approaches, we qualitatively verified how the 

Fig. 1. Overall flow of multi-task feature transfer deep learning-based TC center estimation (MFT–TC) approach. It consists of two automatic steps—initial guess 
determination and TC center determination—and includes two schemes for estimating the TC center.
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proposed model works for determining TC center region in the model. 
Also, we suggested the efficiency of proposed model through comparing 
with single-CNN-based TC center estimation model, which widely used 
in the previous studies.

2. Data

2.1. Geostationary satellite data

A geostationary satellite operates at the same speed as Earth’s rota
tion, allowing it to remain fixed in position and observe a specific area of 
Earth’s surface in high resolution. The meteorological sensors carried on 
them commonly cover wavelengths from visible (0.4–0.6 μm) to long
wave IR (8.5–13.3 μm) to monitor atmospheric conditions. In particular, 
longwave IR channels are sensitive to the water vapor (WV) content in 
the upper atmosphere, and water vapor channels provide mid-level at
mospheric information (Chang and Li, 2005; Lee et al., 2019, 2021; Baek 
et al., 2022; Yin et al., 2022; Choo et al., 2024; Lee et al., 2025). 
Therefore, the IR channels of geostationary satellites have been widely 
utilized to monitor the entire lifetime of TCs (Kurniawan et al., 2024; 
Chang et al., 2020; Liu et al., 2023; Jung et al., 2024). In this study, one 
IR channel and one WV channel were utilized to consider both the 
horizontal spatial pattern and the upper-mid altitudinal water vapor 
concentration of the TCs. In this study, two geostationary satellites 
which launched from South Korea were utilized: Communication, 
Ocean, and Meteorological Satellite (COMS) and GEO-KOMPSAT-2A 
(GK2A). From COMS meteorological imagery (MI), the IR1 channel, 
which has a central wavelength of 10.8 μm, and the WV channel, which 
has a central wavelength of 6.75 μm, were utilized over the Western 
North Pacific (WNP) region from 2011 to 2019. From GK2A advanced 
meteorological imager (AMI), two channels (IR6.9, 6.95 μm; IR10.5, 
10.5 μm) with wavelengths similar to the MI channels (i.e., WV and IR1) 
collected over the WNP from 2019 to 2022. Since the GK2A is subse
quent mission of COMS, the observation range is same, however, spatial 

and temporal resolution were improved: COMS MI IR1 and WV have 
spatial resolution of 4 km and temporal resolution of 15 min, while 
GK2A AMI IR6.9 and IR10.5 have spatial resolution of 2 km and tem
poral resolution of 10 min. To utilize both simultaneously, the spatial 
resolution of each dataset was resampled in 12, 8, and 4 km. COMS MI 
and GK2A AMI data were obtained from the National Meteorological 
Satellite Center (NMSC, https://nmsc.kma.go.kr/).

2.2. Best track data

TC information is obtained from the best track data produced by the 
Joint Typhoon Warning Center (JTWC) (Knapp et al., 2010; Magee et al., 
2016). The best track includes 6 hourly information on the TC center 
location, the maximum sustained wind, minimum sea-level pressure, 
radius to maximum wind (RMW) and so on. For this study, we utilized 
TC location, intensity (maximum sustained wind speed) data over the 
WNP from 2011 to 2021 as a reference, and RMW is also leveraged for 
discussion.

3. Methodology

This study proposes a geostationary satellite-based multi-task feature 
transfer deep learning method for estimating the center of tropical 
cyclone (MTF-TC; Fig. 1). The proposed approach consists of two parts: 
1) determining the initial guessed location of TC and 2) estimating TC 
center location. First, the initial guess of TC location is determined using 
the Long Short-Term Memory (LSTM)-based model. It extracts the ex
pected on-time TC location using past TC locations, which serves as the 
initial guess for the TC center when extracting on-time TC regions from 
the geostationary satellite-based IR window and WV channels. Subse
quently, using the copped TC regions, MFT-TC is conducted to determine 
the exact TC center location. Here, two schemes are tested: Scheme 1 for 
divided dataset whether TC contains eye or not, and Scheme 2 for all- 
combined datasets. For verifying feasibility of MFT-TC model, the 

Fig. 2. Statistical template-based eye detection method. TC eye existence is determined through analyzing two-dimensional correlation coefficient using three round 
templates with 132, 84, and 36 km of size. If the average of maximum values from three template-based correlation maps over the TC observations was over 0.4, the 
target TC was determined as eye-contained TC.
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performance is compared with a single-CNN-based TC center estimation 
method, which has been widely utilized in previous studies. Further
more, using heat map, which is one of the explainable AI (XAI) methods, 
we investigate where each model focused on estimating the TC center 
location.

3.1. Initial guess TC location determination using long-short-term memory 
(LSTM)

Prior to extracting TC images from satellite observations, an initial 
estimate of TC location is necessary. There are two ways to obtain an 
initial guess of TC locations: utilizing numerical model-based forecasting 
results (e.g., Lu et al., 2019; Lee et al., 2019; Ho et al., 2024) and using 
estimated results 6 h priorly (e.g., Lee et al., 2019; Wang et al., 2024). 
Several previous studies (e.g., S. Gao et al., 2018; Lian et al., 2020) have 
revealed that LSTM is efficient for TC track forecasting, particularly for 
short-term prediction (i.e., 6 h forecasting). In this study, we utilize a 
simple LSTM-based TC initial location determination approach to obtain 
the current TC initial guessed location using hourly time-series location 
estimation from 24 h to 6 h priorly. LSTM is an advanced model of 
recurrent neural networks (RNN) leveraged to handle sequential data 
and long-term dependencies (Hochreiter, 1997; Yu et al., 2019; Jung 
et al., 2020; Chi, 2022; Hao et al., 2023; Zhu et al., 2024). It can 

remember and forget the significant information through a specific 
gating mechanism. One LSTM unit consists of a cell state, hidden state, 
and four gates (i.e., input gate, forget gate, cell gate, and output gate). 
We set the TC initial guess estimation model with one LSTM layer 
facilitating with hidden states of 50 (i.e., the dimension of the hidden 
state is 50), an activation function of “tanh,” and a recurrent activation 
function of “sigmoid.”

3.2. Eye detection method

Structural characteristics of TC can be divided in two types: con
taining eye or not. When the TC has eye, the center of cyclone is clear, 
however, there is no eye, more wide structural characteristics of the 
spiral should be considered to determine where is the center of it. Based 
on this point of view, two schemes are tested according to sample dis
tributions: divided into whether a TC contains an eye or not (Scheme 1) 
and all samples (Scheme 2). Here, to distinguish the existence of eye, 
automatic TC eye detection should be prioritized. In this study, we 
propose a statistical template-based TC eye detection algorithm (ST-eye) 
(Fig. 2 and Appendix A). The main assumption of ST-eye is that the 
spatial correlation between the reference round template and TC central 
region shows higher value when eye exists, compared to non-eye TCs. 
Since the size of eye varies depending on eye types (i.e., “EYE”, 

Fig. 3. Input data structures of originally extracted TC images and preprocessed datasets for three modules of multi-task feature transfer deep learning-based tropical 
center estimation model. Both of infrared window and water vapor channels were utilized and cropped over 1 212 km × 1 212 km area based on long-short term 
memory LSTM-based initial guess location. Input structures of three modules are same as (101 × 101 x 2) while spatial resolutions were 12, 8, and 4 km.

Fig. 4. Overall architecture of multi-task feature transfer deep learning-based TC center estimation model (MFT-TC). Proposed model consists of three modules (i.e., 
Module 1–3) for considering different scaled TC images (spatial resolution of 12, 8, and 4 km). It makes efficiently considering multi-scaled images for extracting fine 
resolution characteristics. There are three multi-tasks module, with the main task connected to Module 3 providing the final estimation result.
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“PINHOLE”, “LARGE”) from 5 km to 136 km (Dvorak, 1975, 1984; 
Velden et al., 1998; Tsukada et al., 2023), three sized circle templates (i. 
e., Temp 1–3 with diameters of 132, 84, and 32 km) were utilized for 
classification. First, each template is adopted and convoluted over IR 
window (i.e., MI IR1 and AMI IR11.2 channels)-based TC images for 
calculating 2-dimensional correlation coefficients. Then, an average 
value of maximum correlation coefficient values from Temp 1–3 is 
calculated for determining whether TC contains eye or not. As the 
average value increases, it can be assumed that the eye-like region is 
inside the image. Based on statistical analysis (see Appendix A), the 
threshold for classifying an eye-contain-TC was determined to be 0.4.

3.3. Input data preparation

To develop the TC center estimation models, we first extract satellite 
images containing TCs from the IR1 (IR11.2) and WV (IR6.9) channels of 
the COMS MI (GK2A AMI). As TC eyewalls, the shape of spiral rainbands 
formed by cirrus outflow, and vertical wind shear are crucial structural 
factors for estimating intensity (Dvorak, 1984), it is necessary to use an 
image that covers the entire shape of a TC as an input for training the 
patterns. We delineate the 1 212 × 1 212 km region based on the 
LSTM-based initial guess center for both the long-wave IR and WV 
channels. The three types of input datasets are prepared for the MFT–TC 
model (Fig. 3). In the first module, which encompasses the entire TC 
structure at low resolution, the cropped image is upscaled to a spatial 
resolution of 12 km. For the second module, which refers to the internal 
region of the TC with a medium resolution, the delimited image is 
enlarged to a resolution of 8 km and cropped to a 101 × 101 pixels area 
centered around the central pixel. For the final module, a 101 × 101 
pixels region is extracted centered around the TC center pixel, and the 
spatial resolution of each pixel is 4 km. In the proposed MFT–TC model, 
the three modules (Modules 1, 2, and 3) are interconnected through 
feature transfer from the upper module to the bottom module.

3.4. Multi-task feature transfer deep learning-based TC center detection 
model (MFT–TC)

While there are several existing detection methods for multi zoom-in 
algorithms (e.g., M. Gao et al., 2018; Liu et al., 2021), they detected a 
specific feature in large-scaled image, and estimated small scaled ob
jects. However, in this study, we proposed the model considering syn
optic and local scaled pattern simultaneously, for significantly estimate 
where the cyclonic center of TC is. We propose a novel algorithm, which 
is called MFT-TC that merges with the multi-task learning and the 
feature transfer (FT) deep learning approach (Fig. 4, Table 2). Multi-task 
learning is a machine learning approach in which a model is trained to 
extract multiple related tasks (i.e., outputs) simultaneously (Caruana, 
1997; Zhang et al., 2018; Lee et al., 2020; Yu et al., 2022). By leveraging 
similarities between tasks, it enhances performance, especially when 
data for individual tasks are limited. This is achieved by minimizing a 
combined loss function, allowing the model to generalize better through 
shared representations and mutual regularization. It enables the model 
to learn multiple features simultaneously by utilizing shared represen
tations across different tasks. This allows the model to capture various 
characteristics within the input dataset. By leveraging similarities be
tween tasks, it enhances performance, especially when data for indi
vidual tasks are limited. This is achieved by minimizing a combined loss 
function, allowing the model to generalize better through shared rep
resentations and mutual regularization. In this study, we aim to utilize 
the advantage of multi-task learning while addressing challenges to 
handle multi-scaled spatial characteristics and optimize TC center esti
mation performance. MFT-TC enables sharing the parameters of each 
module and the spatial characteristics from one module available to 
effect other module. The model consists of three modules, each corre
sponding to multi-scale input datasets at resolutions of 12, 8 and 4 km 
(Fig. 4). Since the input dataset sizes are consistent (i.e., 2 × 101 × 101), 

receptive areas are varied, with 1 212 km × 1 212 km in Module 1 (the 
largest-scale module), 808 km × 808 km in Module 2, and 404 km ×
404 km in Module 3 (the most focused-scale module). First, the 
large-scale module is trained to capture the synoptic outflow patterns of 
the TC in relation to its central location. The centrally focused feature 
learned in this module is then transferred to the subsequent module, 
where it is concatenated with new features. These combined features are 
optimized simultaneously for both the synoptic-scale and focused-scale 
central regions. Given that the satellite observation resolution is stan
dardized at 4 km, we develop three modules with scales of 12 km, 8 km, 
and 4 km. It enables to mimic the nesting approach from weather 
research and forecasting model, embedding a high-resolution model 
within a large, lower-resolution model to capture fine resolution fea
tures (e.g., Richardson et al. (2007)). The main task, which is directly 
connected to Module 3, extracts the final TC center estimation results of 
this model. To verify the efficiency of MFT-TC, the single-CNN-based TC 
center estimation model, which has been widely used in previous 
studies, was tested. The single-CNN architecture contains four con
volutional modules with two fully connected layers. Through the 
trial-and-error approach proposed by Wang et al. (2024), the most 
optimized single-CNN-based model to our dataset was utilized to verify 
the feasibility of our proposed models (Table 1).

3.5. Evaluation

To evaluate the performance of TC center estimation models, dis
tance error (DE, km) and mean DE (MDE, km) are used. Additionally, 
skill score (SS) is utilized for verifying feasibility of proposed model. 

Distance error (DEi)= distance(yi, ŷi) (1) 

Maen distance error (MDE)=
∑N

i (DEi)

N
(2) 

Skill socre (SS)=
MDEproposed − MDEctrl

MDEctrl
(3) 

where yi and ŷi are the reference center and estimated center locations, 

Table 1 
Single convolutional neural networks-based tropical cyclone estimation models, 
which were used as control models in this study. C, BN, P, and FC indicate a 
convolutional layer, batch normalization, pooling layer, and fully connected 
layer, independently. The numbers in each abbreviation means that C (number 
of kernels)@(size of the kernel), P (size of pooling layer), FC(number of kernels 
in the fully connected layer).

Model Architecture

Single-CNN-based TC center 
estimation model

C16@7, BN, P2, dropout = 0.4, C32@5, BN, P2, 
C64@3, BN, P3, C192@3, C512@1, FC192, FC64

Table 2 
Architecture of multi-task feature transfer deep learning-based TC center esti
mation model. The numbers in each abbreviation mean that number of kernels 
in C, size of the kernel in @, size of pooling layer in P, number of kernels in the 
fully connected layer in FC, and ⊙ indicates a concatenation. The bolded stages 
in each module were utilized for integration into sub-modules to transfer fea
tures. The upper script part represents the cropping ratio for concatenating with 
sub-modules.

Modules Architecture Output

Module 
1

1C16@7, 1P2, 1drop out = 0.25, 1C32@5, 1P2, 1C64@3, 
1P2, 1C192@3, 1P2, 1C512@1, 1Flatten, 1FC192, 1FC64

Sub task 
1

Module 
2

2C16@7, 2P2, 2drop out = 0.25, 2C32@5, 1C32@5 p0.75⊙ 
2P2, 2C64@3, 2P2, 2C512@1, 2Flatten, 2FC192, 2FC64

Sub task 
2

Module 
3

3C116@7, 3P2, 3drop out = 0.25, 3C32@5, 3P2, 3C64@3, 
[1C32@5part0.75 ⊙ 2P2] part0.5⊙ 3P2, 3C192@3, 3C512@1, 
3DR0.25, 3Flatten, 3FC192, 3FC64

Main 
task
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distance
(
yi, ŷi

)
indicates the distance between the reference and esti

mated centers, N indicates the number of test samples, and MDEproposed 

and MDEctrl represents the MDE performance of proposed model and 
control model, respectively.

To verify the feasibility of sample distribution method and MFT- 
based model, we conduct two steps of evaluation. First, two schemes 
according to sample divided method (i.e., Scheme 1 and 2) were eval
uated according to the intensity: Scheme 1, which divides the datasets 
based on the absence and presence of TC eye, Scheme 2, which uses the 
entire combined dataset. Subsequently, based on the optimized scheme, 

the performance of MFT-TC is evaluated compared to the single CNN- 
based TC center estimation models, which widely utilized in previous 
studies (e.g., Wang et al., 2024; Ho et al., 2024). In this study, the 
scheme-wise performance is evaluated not only for the overall perfor
mance but also for the categorical performance based on the 
Saffir-Simpson criteria (Table 3).

4. Results and discussion

4.1. Performance of MFT-TC according to the presence and absence of TC 
eye

The quantitative evaluation of the MFT–TC utilized two test sets (TCs 
in 2019 extracted from COMS MI and TCs in 2021 extracted from GK2A 
AMI). As TCs have structural characteristics that depend on their in
tensity, two schemes (i.e., training divided samples according to 
whether the TC contains eyes or not (scheme 1, MFT–TC-div) and using 
whole TC datasets (scheme 2, MFT–TC-whl) were tested. Table 4 pre
sents a comparison of the performance of the two schemes using the 
MDE, and SS of scheme 2 as the key evaluation metrics. Overall, scheme 
2 shows better performance compared to scheme 1, with SS of 14.09 %. 
In particular, scheme 2 outperforms scheme 1 across all categories, from 
TD to category 5 TC, with the skill scores improving as the TC category 
increases. The most notable improvement is observed in Category 5, 
with an SS improvement of 35.06 %. This implies that classifying the 
samples into those with and without the TC eye and then training them 
separately is highly beneficial in detecting center of strong TCs.

4.2. Performance of the multi-task feature transfer deep learning-based 
TC center detection

After verifying the efficiency of Scheme 1, the performance of MFT- 
TC is evaluated in terms of both detection performance and computing 
cost through comparing with widely used single CNN-based TC center 
estimation approach. Fig. 5 illustrates the MDEs based on their in
tensities. As the TC intensifies, the general center determination per
formance improves linearly. Notably, MFT-based TC detection 
consistently maintained lower errors than the single-CNN-based ap
proaches. Especially in the moderate intensity range (55–80 knots) 
without TC eyes, significant improvements are noted in MFT–TC-based 
TC center detection, with improvements ranging from 12 % to 39 %. 
Previous studies have indicated that because of the structural ambiguity 
of unorganized TCs, it is difficult to specify TC using normal visual in
spection analysis (Chaurasia et al., 2010; Zheng et al., 2019; Shin et al., 
2022). To mitigate this limitation, it is necessary to propose a novel 

Table 3 
Tropical cyclone intensity categories based on the Saffir-Simpson 
category. It is utilized for evaluating the scheme-wised multi- 
task feature transfer deep learning-based tropical cyclone center 
estimation model.

Category Intensity (kts)

Tropical Depression (TD) 20–34
Tropical Storm (TS) 35–63
Category 1 (C1) 64–82
Category 2 (C2) 83–95
Category 3 (C3) 96–113
Category 4 (C4) 114–135
Category 5 (C5) >135

Table 4 
Scheme-wise categorical mean distance error (MDE) and skill score (SS) of 
scheme 2. Scheme 1 and scheme 2 indicate the MFT–TC-based center estimation 
approach utililzing divided training samples by eye detection algorithm (MFT- 
TC-div) and whole training samples (MFT-TC-whl).

Category Sample 
size

MDE (km) Skill score (%) 
of scheme 2

Scheme 1 
(MFT–TC-div)

Scheme 2 
(MFT–TC-whl)

TD 303 55.41 56.31 1.60
TS 406 40.49 46.24 12.43
Category 

1
139 25.70 31.39 18.13

Category 
2

86 19.33 23.98 19.39

Category 
3

46 14.51 20.46 29.08

Category 
4

54 9.93 13.55 26.72

Category 
5

29 7.04 10.84 35.06

Overall 1 093 27.44 31.94 14.09

Fig. 5. Mean distance error according to intensities of multi-task feature transfer deep learning-based tropical cyclone center estimation model (MFT–TC) and single 
convolutional neural networks (single-CNN)-based center estimation model. Red and gray bars indicate intensity-wised mean distance error of MFT–TC and single- 
CNN-based estimation results, respectively.
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approach for efficiently estimating the TC center location. At this point 
of view, proposed model significantly captures the large-scale rough 
pattern of the TC, which is related to center detection, and the feature 
information was successfully transferred to the bottom module. Fig. 6
depicts the center-detection performance, particularly for TCs without 
eyes. When the eye of the TC is absent, center determination inevitably 

relies on spiral structural characteristics. Therefore, it is difficult to 
determine the center location. When using the single-CNN-based TC 
center estimation, the model mainly focuses on the global cyclonic 
pattern to estimate TC center location. On the other hand, the hierar
chical structure of the MFT-TC model enables the capture of both the 
general outflow pattern of TCs and the sequential transition to 

Fig. 6. Examples comparing Mult-task feature transfer deep learning (MFT) and single convolutional neural networks (Single-CNN, Control 1)-based TC center 
detection results. Red circle indicates the reference TC center location by the joint typhoon warning center (JTWC) best track. Blue and Yellow triangles indicate 
MFT-TC and single-CNN-based TC center detection results, respectively. The corresponding date, time (UTC), and the wind speed in knots are annotated on 
each subfigure.
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high-resolution modules, making it possible to improve center detection 
performance. Furthermore, the proposed model shows significant im
provements in computational efficiency as well. While the 
single-CNN-based approach requires high dimensional input datasets 
which cover holistic TC regions with fine resolution, the MFT-TC works 
with low dimensional input datasets of varying scaled and resolutions (i. 
e., large-area TC images with low spatial resolution and focusing TC core 
regions with fine resolution). In this study, the MFT-TC method 

significantly reduced the number of modeling parameters used in a 
single-CNN model from 43,607,698 to 22,863,290. This not only 
streamlined the model but also enhanced its overall computational ef
ficiency by 47 %. Table 5 represents the performance of previous 
studies. While differences in validation data limit direct comparison, we 
can still assess the overall range of errors across studies. The results show 
that our method, which utilizes a 4 km spatial resolution, achieves 
performance comparable to or even better than other models that use a 
higher 2 km resolution. This suggests that our approach not only reduces 
computational time but also contributes to performance improvement.

The error in TC center estimation may depend not only on intensity 
but also on TC size, particularly the size of the TC eye. To investigate 
this, we analyzed the correlation between the Radius of Maximum Wind 
(RMW), which is closely related to TC eye size, and the TC center 

Table 5 
Comparison of previous studies and the current method for tropical cyclone 
center estimation. 1◦ of latitude and longitude correspond 111.32 km and cos 
(latitude)*111.32 km, respectively.

Proposed 
study

Method Dataset Spatial 
resolution

Evaluation 
target

MAE

Wang 
et al. 
(2020)

CNN Himawari- 
8

2 km 2008 to 
2011 and 
2017 to 
2019

Longitude 
0.237◦ and 
Latitude 
0.237◦

Zheng 
et al. 
(2019)

Cloud- 
derived 
wind 
motion

​ ​ 3 TC cases 41 km

Shin et al. 
(2022)

Fitting 
TC spiral 
band

COMS 4 km 2019 TCs 0.38◦

Wang 
et al. 
(2021)

CNN Himawari- 
8

2 km ​ 39.1 km

Wang 
et al. 
(2024)

CNN Himawari- 
8

2 km Randomly 
separated 
TCs from 
2015 to 
2018

29.3 km

Control 
using 
single 
CNN

CNN COMS and 
GK2A

4 km 2019 and 
2021 TCs

32.08 km

Proposed 
(scheme 
1)

MFT-TC- 
div

COMS and 
GK2A

4 km 2019 and 
2021 TCs

27.44 km

Proposed 
(scheme 
2)

MFT-TC- 
whl

COMS and 
GK2A

4 km 2019 and 
2021 TCs

31.94 km

Fig. 7. Scatter plot of distance error against to the radius to the maximum 
wind. X-axis and Y-axis indicate the radius of maximum wind and distance 
error, respectively. The scatter color varies based on the intensity. R indicates 
the correlation from canonical crrelation analysis.

Fig. 8. The mean TC center estimation errors at each grid point of the western 
North Pacific for the MFT-TC (a) and the control model (b), and their differ
ences (c).
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estimation error based on the MFT-TC method (Fig. 7). The results show 
a weak but noticeable trend of decreasing error as RMW decreases (r =
0.32, p = 0.03). This tendency is associated with the fact that lower 
RMW values are generally linked to stronger TCs (Li et al., 2021; Wu 
et al., 2021; Ruan et al., 2022). That is, as RMW decreases, TC intensity 
tends to increase (as shown by the color scale in Fig. 7), and strong TCs 
generally have lower TC center estimation errors, so the smaller the 
RMW, the lower the error tends to be.

Fig. 8 compares the mean TC center estimation errors between the 
MFT-TC and the control model at each grid point of the western North 
Pacific. Here, it is evident that the mean distance error is higher near the 
coastline. Generally, when a TC makes landfall, its energy source from 
the warm ocean is cut off, and increased friction with the land surface 
causes the TC to weaken and undergo rapid structural changes. This 
makes TC center estimation more challenging, ultimately leading to 
increased errors near the coastline. On the other hand, as a TC in
tensifies, its eye becomes more distinct, and its symmetry increases. This 
makes TC center estimation easier, leading to reducing errors (see 
Fig. 5). By examining the error differences between MFT and control 
(Fig. 8c), it can be seen that when the TC forms and develops over the 
open ocean and approaches land, its weak intensity and disorganized 
structure result in larger TC center estimation error and at these regions, 
the greatest error improvements occur.

4.3. Interpretation of single CNN- and MFT-based TC center estimation

In this study, the proposed model (MFT-TC) achieves a significant 
performance in terms of accuracy as well as computational efficiency 
compared to the single CNN-based model. Notably, when the samples 
are categorized based on the presence or absence of an eye, overall 
performance improved by 14.09 % (Table 4). To verify how the MFT-TC 
estimates are more accurate compared to the single CNN-based one, heat 
map visualization approach was used in this study. It is one of the 
visualization approaches for verifying how the CNN-based model ana
lyzes the input dataset for extracting output (Selvaraju et al., 2017). The 
aggregated feature map that comes from each convolution block shows 
the activated region of the feature, and the last activation map is widely 
used for the heat map of the model. Thus, we utilized the heat map from 
the last convolution block for the discussion. Figs. 9 and 10 represent the 
visualization of single CNN and MFT-TC model trained on Scheme 1 
(MFT-TC-div), which are results from the models trained using non-eye 
samples and eye-contained samples, respectively. When comparing in 
the single CNN-based heatmaps (Fig. 9 (a,b,c,d− 1,2) and Fig. 10 (a,b,c, 
d− 1,2)), the model trained with eye-contained samples tends to mostly 
focus on the central region while non-eye-based one tends to consider 
the general pattern of whole TC structure. It implies that, when the TC 
contained eye, it shows slightly easy to capture the central region in the 
raw resolution-based whole TC observations. On the other hand, when 

Fig. 9. Heat map-based explainability analysis of single convolutional neural networks (Single CNN)- and multi-task feature transfer deep learning model-based TC 
center estimation model (MFT-TC) using non-eye samples. Second and third columns (− 3 and − 4) indicate the estimated results from Single-CNN and MFT-TC. Red 
dot and blue star represent estimated and reference TC center. Distance error (DE) indicates the estimation error between Single-CNN and MFT-TC-based estimated 
center and reference, and DEs are shown in the third and fourth columns. While the first and second column (− 1 and − 2) indicates heat maps from Single CNN-based 
TC center estimation model over the corresponding area with 4 km and 12 km module inputs. The fifth, and sixth column (− 5 and − 6) imply the heat maps from 12 
km to 4 km modules in MFT-TC model, respectively.
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the TC center location was estimated using MFT-TC (Fig. 9 (a,b,c,d,− 5, 
6) and Fig. 10 (a,b,c,d,− 5, 6)), the figures show that the general TC 
spiral flows were well captured in the synoptic-scale module (i.e., 12 km 
module). As the modules become more specific, they focus increasingly 
on the central region (the estimated TC center).

In the case of Fig. 9 (c), since the TC is very weak with 25 kts of 
intensity, it is hard to generalize the region of center location; the single 
CNN-based estimation results showed 139.92 km of DE. On the other 
hand, MFT-TC achieved 30.32 km of DE in the same case. It tends to 
analyze the TC structure hierarchically module by module; synoptic 
pattern is activated in the 12 km module while spiral flow was activated 
in the 4 km module. In the case of Fig. 9 (d), MFT-TC performed sig
nificant improvement compared to Single-CNN-based one with consid
ering multi-scaled pattern simultaneously in the one model. In the case 
of the eye-contained-based models (i.e., Fig. 10), both of single CNN and 
MFT-TC represents more accurate performance compared to the non- 
eye-based models (i.e., Fig. 10). Nevertheless, the proposed MFT-TC 
shows significant improvement compared to the single-CNN-based 
one. It also implies that the essentiality of hierarchical analyzing 
multi-scaled observations and supposes that the potential of MFT 
approach could be utilized when addressing multiple spatial and tem
poral scaled is necessary.

5. Conclusion

This study suggested a novel MFT-TC approach using geostationary 
satellite observations. By integrating feature connections across 
different spatial resolutions with multiple tasks, the proposed approach 

shows significant improvements in prediction accuracy over traditional 
single-CNN methods. Our results indicate that higher spatial resolution 
satellite images combined with feature-connected modules enhance the 
precision of TC center estimation and computing efficiency. Further
more, two types of sample distribution (i.e., Scheme 1 and 2) were 
validated to verify the feasibility of sample dividing according to the 
existence of eye or not. Through quantitative evaluation of center esti
mation results, scheme 1-based TC center estimation (i.e., MFT-TC-div) 
achieved significant improvement of 14.08 % compared to Scheme 2 (i. 
e., MFT-TC-whl). This result implies that it is necessary to divide the TC 
samples according to its structural characteristics in order to accurately 
determine its center. Based on the most optimized scheme (i.e., Scheme 
1), performance of MFT-TC was evaluated through comparing with a 
single CNN-based optimized TC center estimation model, which has 
been widely used in previous studies. MFT-TC achieved significant skill 
score improvement by 39 % compared to a single CNN-based TC center 
estimation. Especially in the intensity range of 55–80, developing phase 
into a high-intensity TC and where the eye is formed, MFT-TC showed 
notable improvements compared to a single CNN-based model. It im
plies that the MFT-TC-based multi-scaled analysis contributes to the 
effective TC center estimation while considering rough large-scaled 
spiral pattern as well as specific local central region of TC with high 
computational efficiency (decreasing computing costs by 47 %).

Furthermore, to verify how differ the MFT-TC consider the TC ob
servations comparing to a single CNN-based model, the heatmaps, which 
is one of the XAI approaches, has been utilized. These demonstrated that 
the MFT-TC is more effectively consider the multi-scaled morphological 
characteristics simultaneously, such as synoptic scaled spiral band and 

Fig. 10. Same as in Fig. 9, but using eye-contained samples.
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specific central spatial characteristics around TC center. The proposed 
MFT method can be applied not only to TC-centered estimations but also 
to the estimation of TC structural characteristics (e.g., intensity, size). 
Additionally, although this technique has been applied to TCs in the 
western North Pacific, it can also be applied to TCs in other basins. 
However, since TC characteristics vary by basin (Moon et al., 2002), 
optimizing the model using regional TC data during the training process 
can further enhance its performance. By enhancing the accuracy of 
current TC center estimation, this study can contribute to improved TC 
intensity estimation. Furthermore, such advancements in initial condi
tion estimation will ultimately aid in improving TC track and intensity 
forecasts.
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