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Accurate and rapid tropical cyclone (TC) monitoring is crucial for precise forecasting and appropriate response to
mitigate socio-economic damages. Geostationary satellite-based observations are the only tools that allow
continuous monitoring of TCs throughout their entire lifetime, from formation to dissipation. However, owing to
the diversity of TC structures, the automatic extraction of TC information using geostationary satellite-based
cloud-top observations is still challenging. To address this limitation, several deep-learning-based approaches
for extracting TC information have been developed. Here, we propose a novel deep learning-based TC center
estimation approach using real-time geostationary satellite observations. To reduce computational costs while
capturing both the entire TC structure and high-resolution spiral patterns, we propose a multi-task feature
transfer deep learning-based TC center estimation (MFT-TC). This model effectively considers both the entire
spiral band and focuses on specific local characteristics of TC while maintaining high computing efficiency,
reducing computing costs by 47 %). Compared to the conventional single-CNN-based TC center determination
model, which has been widely used in previous studies, the proposed model achieved significant improvements,
with skill score increases ranging from 12 % to 39 %. Additionally, since there are significant structural dif-
ferences between TCs with and without an eye, MFT-TC was evaluated under two different schemes based on the
training sets: scheme 1, which uses separate training datasets depending on whether the TC has an eye (MFT-TC-
div) and scheme 2, which uses all TC cases combined (MFT-TC-whl). Evaluation results showed scheme 1-based
MFT-TC achieved a 14.8 % improvement over scheme 2-based MFT-TC, suggesting that separating training
samples based on TC eye presence enhances the accuracy of TC center estimation. Furthermore, using the
explainable artificial intelligence (XAI) approach, we demonstrated that MFT-TC efficiently captures both
overall cyclonic structures and center-specific spatial characteristics to estimate the TC center accurately.

1. Introduction means of observing TCs during their entire lifecycle, from formation to
dissipation. The Dvorak technique (Dvorak, 1975; 1984), a method for

Tropical cyclones (TCs) induce critical socioeconomic damage owing analyzing the cyclonic patterns of TCs wusing geostationary

to severe winds and heavy rainfall and the uncertainty of predictability
has been increased due to climate change (Knapp et al., 2010; Maha-
patra et al., 2018; Forbis et al., 2024; Wu et al., 2024). Although
monitoring TCs is crucial for enhancing forecasting accuracy and
minimizing the resulting damage, instruments to real-time monitor the
whole lifetime of a TC are lacking. Geostationary satellites are the sole

satellite-based infrared channels, has been widely utilized to determine
TC centers in operation. However, the operational method has limita-
tions in that it is difficult to exclude the subjectivity of forecasters and
requires analysis time to obtain TC information.

To mitigate these limitations, several automatic TC center estimation
methods using geostationary satellites have been proposed, which are
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Fig. 1. Overall flow of multi-task feature transfer deep learning-based TC center estimation (MFT-TC) approach. It consists of two automatic steps—initial guess
determination and TC center determination—and includes two schemes for estimating the TC center.

divided into two approaches: 1) statistical methods and 2) deep
learning-based methods. For statistical approaches, some methods uti-
lize the gradient of brightness temperatures (BTs) around the TC system
(e.g., Zheng et al., 2019; Hu et al., 2021) or consider highly convective
cyclonic patterns around the TC center (e.g., Lu et al., 2019; Shin et al.,
2022). Assuming a highly convective region in the low-BT pixels in
long-wave infrared (IR) channel-based observations, the former con-
siders the gradient of BTs around neighboring pixels and finds that the
highest concentrated region is the TC center. In contrast, the latter
considers the intensity-wise most convective spiral band region around
the TC center and identifies the most fitted region as the TC center.
These statistical approaches are advantageous in terms of providing
intuitive knowledge of how the center was determined. However, they
tend to optimize for ideal TC cases, and limitations exist in improving
the performance of outlier cases.

As an alternative, several deep-learning-based TC center estimation
approaches have been proposed (e.g., Ho et al., 2024; Wang et al., 2024;
Zhang et al., 2024). These approaches widely use convolutional neural
networks (CNNs) to determine the center locations from satellite-based
TC observations. They efficiently considered the horizontal pattern of
TCs for determining centers by analyzing not only center-closed regional
characteristics but also the outflows of TCs. This mitigates the limita-
tions of statistical approaches. However, it inevitably requires that the
input datasets combine entire TC systems to analyze the location of the
TC centers. That is, as the spatial resolution of geostationary satellite
observations improves, the size of the input datasets inevitably

increases, leading to a high computational capacity. When the size of the
input dataset increases, the number of parameters required to train the
neural networks for optimization rises exponentially. Several studies (e.
g., Shin et al., 2022; Wu et al., 2023; Ho et al., 2024) have demonstrated
that the performance of automatic TC center determination gets worse
as the TC gets weaker, implying that center determination is hard when
the TC structure is not ideal. Therefore, it is curial that both of specific
characteristics of central region and synoptic structural characteristics
of whole TC system should be considered simultaneously.

In this study, a multi-task feature transfer deep learning (MFT) model
for TC center estimation is proposed to mitigate the exponentially
increasing computing cost while considering the entire TC structure. The
model consists of three CNN-based modules, all of which have the same
input dataset size. The first module analyzes the entire horizontal TC
structure using a low spatial resolution; the second module focuses on
the inner region of the TC, employing a medium spatial resolution; the
last module concentrates on centrally focused observations utilizing the
highest spatial resolution. In this model, the features of the upper
module are transferred to the bottom module to transport knowledge of
the surrounding spatial patterns, which enables them to interconnect
with each other in the entire network. The proposed approach was
conducted using two schemes: 1) training all TC cases and 2) dividing
them into two TC cases based on whether they contain eyes. Through
quantitative evaluation of each scheme, the most optimal approach
would be proposed. Furthermore, using heat map, which is one of the
explainable AI (XAI) approaches, we qualitatively verified how the
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Fig. 2. Statistical template-based eye detection method. TC eye existence is determined through analyzing two-dimensional correlation coefficient using three round
templates with 132, 84, and 36 km of size. If the average of maximum values from three template-based correlation maps over the TC observations was over 0.4, the

target TC was determined as eye-contained TC.

proposed model works for determining TC center region in the model.
Also, we suggested the efficiency of proposed model through comparing
with single-CNN-based TC center estimation model, which widely used
in the previous studies.

2. Data
2.1. Geostationary satellite data

A geostationary satellite operates at the same speed as Earth’s rota-
tion, allowing it to remain fixed in position and observe a specific area of
Earth’s surface in high resolution. The meteorological sensors carried on
them commonly cover wavelengths from visible (0.4-0.6 pm) to long-
wave IR (8.5-13.3 pm) to monitor atmospheric conditions. In particular,
longwave IR channels are sensitive to the water vapor (WV) content in
the upper atmosphere, and water vapor channels provide mid-level at-
mospheric information (Chang and Li, 2005; Lee et al., 2019, 2021; Baek
et al., 2022; Yin et al., 2022; Choo et al., 2024; Lee et al., 2025).
Therefore, the IR channels of geostationary satellites have been widely
utilized to monitor the entire lifetime of TCs (Kurniawan et al., 2024;
Chang et al., 2020; Liu et al., 2023; Jung et al., 2024). In this study, one
IR channel and one WV channel were utilized to consider both the
horizontal spatial pattern and the upper-mid altitudinal water vapor
concentration of the TCs. In this study, two geostationary satellites
which launched from South Korea were utilized: Communication,
Ocean, and Meteorological Satellite (COMS) and GEO-KOMPSAT-2A
(GK2A). From COMS meteorological imagery (MI), the IR1 channel,
which has a central wavelength of 10.8 pm, and the WV channel, which
has a central wavelength of 6.75 pm, were utilized over the Western
North Pacific (WNP) region from 2011 to 2019. From GK2A advanced
meteorological imager (AMI), two channels (IR6.9, 6.95 pm; IR10.5,
10.5 pm) with wavelengths similar to the MI channels (i.e., WV and IR1)
collected over the WNP from 2019 to 2022. Since the GK2A is subse-
quent mission of COMS, the observation range is same, however, spatial

and temporal resolution were improved: COMS MI IR1 and WV have
spatial resolution of 4 km and temporal resolution of 15 min, while
GK2A AMI IR6.9 and IR10.5 have spatial resolution of 2 km and tem-
poral resolution of 10 min. To utilize both simultaneously, the spatial
resolution of each dataset was resampled in 12, 8, and 4 km. COMS MI
and GK2A AMI data were obtained from the National Meteorological
Satellite Center (NMSC, https://nmsc.kma.go.kr/).

2.2. Best track data

TC information is obtained from the best track data produced by the
Joint Typhoon Warning Center (JTWC) (Knapp et al., 2010; Magee et al.,
2016). The best track includes 6 hourly information on the TC center
location, the maximum sustained wind, minimum sea-level pressure,
radius to maximum wind (RMW) and so on. For this study, we utilized
TC location, intensity (maximum sustained wind speed) data over the
WNP from 2011 to 2021 as a reference, and RMW is also leveraged for
discussion.

3. Methodology

This study proposes a geostationary satellite-based multi-task feature
transfer deep learning method for estimating the center of tropical
cyclone (MTF-TG; Fig. 1). The proposed approach consists of two parts:
1) determining the initial guessed location of TC and 2) estimating TC
center location. First, the initial guess of TC location is determined using
the Long Short-Term Memory (LSTM)-based model. It extracts the ex-
pected on-time TC location using past TC locations, which serves as the
initial guess for the TC center when extracting on-time TC regions from
the geostationary satellite-based IR window and WV channels. Subse-
quently, using the copped TC regions, MFT-TC is conducted to determine
the exact TC center location. Here, two schemes are tested: Scheme 1 for
divided dataset whether TC contains eye or not, and Scheme 2 for all-
combined datasets. For verifying feasibility of MFT-TC model, the
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Fig. 3. Input data structures of originally extracted TC images and preprocessed datasets for three modules of multi-task feature transfer deep learning-based tropical
center estimation model. Both of infrared window and water vapor channels were utilized and cropped over 1 212 km x 1 212 km area based on long-short term
memory LSTM-based initial guess location. Input structures of three modules are same as (101 x 101 x 2) while spatial resolutions were 12, 8, and 4 km.

performance is compared with a single-CNN-based TC center estimation
method, which has been widely utilized in previous studies. Further-
more, using heat map, which is one of the explainable AI (XAI) methods,
we investigate where each model focused on estimating the TC center
location.

3.1. Initial guess TC location determination using long-short-term memory
(LSTM)

Prior to extracting TC images from satellite observations, an initial
estimate of TC location is necessary. There are two ways to obtain an
initial guess of TC locations: utilizing numerical model-based forecasting
results (e.g., Lu et al., 2019; Lee et al., 2019; Ho et al., 2024) and using
estimated results 6 h priorly (e.g., Lee et al., 2019; Wang et al., 2024).
Several previous studies (e.g., S. Gao et al., 2018; Lian et al., 2020) have
revealed that LSTM is efficient for TC track forecasting, particularly for
short-term prediction (i.e., 6 h forecasting). In this study, we utilize a
simple LSTM-based TC initial location determination approach to obtain
the current TC initial guessed location using hourly time-series location
estimation from 24 h to 6 h priorly. LSTM is an advanced model of
recurrent neural networks (RNN) leveraged to handle sequential data
and long-term dependencies (Hochreiter, 1997; Yu et al., 2019; Jung
et al., 2020; Chi, 2022; Hao et al., 2023; Zhu et al., 2024). It can

Module 1

Module 2

Module 3

remember and forget the significant information through a specific
gating mechanism. One LSTM unit consists of a cell state, hidden state,
and four gates (i.e., input gate, forget gate, cell gate, and output gate).
We set the TC initial guess estimation model with one LSTM layer
facilitating with hidden states of 50 (i.e., the dimension of the hidden
state is 50), an activation function of “tanh,” and a recurrent activation
function of “sigmoid.”

3.2. Eye detection method

Structural characteristics of TC can be divided in two types: con-
taining eye or not. When the TC has eye, the center of cyclone is clear,
however, there is no eye, more wide structural characteristics of the
spiral should be considered to determine where is the center of it. Based
on this point of view, two schemes are tested according to sample dis-
tributions: divided into whether a TC contains an eye or not (Scheme 1)
and all samples (Scheme 2). Here, to distinguish the existence of eye,
automatic TC eye detection should be prioritized. In this study, we
propose a statistical template-based TC eye detection algorithm (ST-eye)
(Fig. 2 and Appendix A). The main assumption of ST-eye is that the
spatial correlation between the reference round template and TC central
region shows higher value when eye exists, compared to non-eye TCs.
Since the size of eye varies depending on eye types (i.e., “EYE”,

” = ’ =) =) Sub task 1

Fig. 4. Overall architecture of multi-task feature transfer deep learning-based TC center estimation model (MFT-TC). Proposed model consists of three modules (i.e.,
Module 1-3) for considering different scaled TC images (spatial resolution of 12, 8, and 4 km). It makes efficiently considering multi-scaled images for extracting fine
resolution characteristics. There are three multi-tasks module, with the main task connected to Module 3 providing the final estimation result.
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“PINHOLE”, “LARGE”) from 5 km to 136 km (Dvorak, 1975, 1984;
Velden et al., 1998; Tsukada et al., 2023), three sized circle templates (i.
e., Temp 1-3 with diameters of 132, 84, and 32 km) were utilized for
classification. First, each template is adopted and convoluted over IR
window (i.e., MI IR1 and AMI IR11.2 channels)-based TC images for
calculating 2-dimensional correlation coefficients. Then, an average
value of maximum correlation coefficient values from Temp 1-3 is
calculated for determining whether TC contains eye or not. As the
average value increases, it can be assumed that the eye-like region is
inside the image. Based on statistical analysis (see Appendix A), the
threshold for classifying an eye-contain-TC was determined to be 0.4.

3.3. Input data preparation

To develop the TC center estimation models, we first extract satellite
images containing TCs from the IR1 (IR11.2) and WV (IR6.9) channels of
the COMS MI (GK2A AMI). As TC eyewalls, the shape of spiral rainbands
formed by cirrus outflow, and vertical wind shear are crucial structural
factors for estimating intensity (Dvorak, 1984), it is necessary to use an
image that covers the entire shape of a TC as an input for training the
patterns. We delineate the 1 212 x 1 212 km region based on the
LSTM-based initial guess center for both the long-wave IR and WV
channels. The three types of input datasets are prepared for the MFT-TC
model (Fig. 3). In the first module, which encompasses the entire TC
structure at low resolution, the cropped image is upscaled to a spatial
resolution of 12 km. For the second module, which refers to the internal
region of the TC with a medium resolution, the delimited image is
enlarged to a resolution of 8 km and cropped to a 101 x 101 pixels area
centered around the central pixel. For the final module, a 101 x 101
pixels region is extracted centered around the TC center pixel, and the
spatial resolution of each pixel is 4 km. In the proposed MFT-TC model,
the three modules (Modules 1, 2, and 3) are interconnected through
feature transfer from the upper module to the bottom module.

3.4. Multi-task feature transfer deep learning-based TC center detection
model (MFT-TC)

While there are several existing detection methods for multi zoom-in
algorithms (e.g., M. Gao et al., 2018; Liu et al., 2021), they detected a
specific feature in large-scaled image, and estimated small scaled ob-
jects. However, in this study, we proposed the model considering syn-
optic and local scaled pattern simultaneously, for significantly estimate
where the cyclonic center of TC is. We propose a novel algorithm, which
is called MFT-TC that merges with the multi-task learning and the
feature transfer (FT) deep learning approach (Fig. 4, Table 2). Multi-task
learning is a machine learning approach in which a model is trained to
extract multiple related tasks (i.e., outputs) simultaneously (Caruana,
1997; Zhang et al., 2018; Lee et al., 2020; Yu et al., 2022). By leveraging
similarities between tasks, it enhances performance, especially when
data for individual tasks are limited. This is achieved by minimizing a
combined loss function, allowing the model to generalize better through
shared representations and mutual regularization. It enables the model
to learn multiple features simultaneously by utilizing shared represen-
tations across different tasks. This allows the model to capture various
characteristics within the input dataset. By leveraging similarities be-
tween tasks, it enhances performance, especially when data for indi-
vidual tasks are limited. This is achieved by minimizing a combined loss
function, allowing the model to generalize better through shared rep-
resentations and mutual regularization. In this study, we aim to utilize
the advantage of multi-task learning while addressing challenges to
handle multi-scaled spatial characteristics and optimize TC center esti-
mation performance. MFT-TC enables sharing the parameters of each
module and the spatial characteristics from one module available to
effect other module. The model consists of three modules, each corre-
sponding to multi-scale input datasets at resolutions of 12, 8 and 4 km
(Fig. 4). Since the input dataset sizes are consistent (i.e., 2 x 101 x 101),
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Table 1

Single convolutional neural networks-based tropical cyclone estimation models,
which were used as control models in this study. C, BN, P, and FC indicate a
convolutional layer, batch normalization, pooling layer, and fully connected
layer, independently. The numbers in each abbreviation means that C (number
of kernels)@(size of the kernel), P (size of pooling layer), FC(number of kernels
in the fully connected layer).

Model Architecture

Single-CNN-based TC center
estimation model

Cl6@?7, BN, P2, dropout = 0.4, C32@5, BN, P2,
C64@3, BN, P3, C192@3, C512@1, FC192, FC64

Table 2

Architecture of multi-task feature transfer deep learning-based TC center esti-
mation model. The numbers in each abbreviation mean that number of kernels
in C, size of the kernel in @, size of pooling layer in P, number of kernels in the
fully connected layer in FC, and ® indicates a concatenation. The bolded stages
in each module were utilized for integration into sub-modules to transfer fea-
tures. The upper script part represents the cropping ratio for concatenating with
sub-modules.

Modules Architecture Output
Module 1c16@?7, P2, drop out = 0.25, 'C32@5, 'P2, 'C64@3, Sub task
1 1p2, 1c192@3, P2, 'C512@1, 'Flatten, 'FC192, 'FC64 1
Module 2C16@7, 2P2, 2drop out = 0.25, 2C32@5, 'C32@5 P*7°0  Sub task
2 2p2, 2C64@3, %P2, 2C512@1, *Flatten, 2FC192, *FC64 2
Module 3C116@7, °p2, 3drop out = 0.25, °C32@5, °P2, °C64@3, Main
3 [1C32@5P"0-75 @ 2p2] Part0-5q 3p2, 3C192@3, °C512@1,  task

3DR0.25, 3Flatten, *FC192, >FC64

receptive areas are varied, with 1 212 km x 1 212 km in Module 1 (the
largest-scale module), 808 km x 808 km in Module 2, and 404 km x
404 km in Module 3 (the most focused-scale module). First, the
large-scale module is trained to capture the synoptic outflow patterns of
the TC in relation to its central location. The centrally focused feature
learned in this module is then transferred to the subsequent module,
where it is concatenated with new features. These combined features are
optimized simultaneously for both the synoptic-scale and focused-scale
central regions. Given that the satellite observation resolution is stan-
dardized at 4 km, we develop three modules with scales of 12 km, 8 km,
and 4 km. It enables to mimic the nesting approach from weather
research and forecasting model, embedding a high-resolution model
within a large, lower-resolution model to capture fine resolution fea-
tures (e.g., Richardson et al. (2007)). The main task, which is directly
connected to Module 3, extracts the final TC center estimation results of
this model. To verify the efficiency of MFT-TC, the single-CNN-based TC
center estimation model, which has been widely used in previous
studies, was tested. The single-CNN architecture contains four con-
volutional modules with two fully connected layers. Through the
trial-and-error approach proposed by Wang et al. (2024), the most
optimized single-CNN-based model to our dataset was utilized to verify
the feasibility of our proposed models (Table 1).

3.5. Evaluation

To evaluate the performance of TC center estimation models, dis-
tance error (DE, km) and mean DE (MDE, km) are used. Additionally,
skill score (SS) is utilized for verifying feasibility of proposed model.

Distance error (DE;) = distance(y;, ;) (€]
>0 (DE;)
Maen distance error (MDE) = ’T (2)
MDE, — MDE,
Skill socre (SS) = ——proposed — T el 3

MDE.n

where y; and y; are the reference center and estimated center locations,
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Table 3

Tropical cyclone intensity categories based on the Saffir-Simpson
category. It is utilized for evaluating the scheme-wised multi-
task feature transfer deep learning-based tropical cyclone center
estimation model.

Category Intensity (kts)
Tropical Depression (TD) 20-34
Tropical Storm (TS) 35-63
Category 1 (C1) 64-82
Category 2 (C2) 83-95
Category 3 (C3) 96-113
Category 4 (C4) 114-135
Category 5 (C5) >135

Table 4

Scheme-wise categorical mean distance error (MDE) and skill score (SS) of
scheme 2. Scheme 1 and scheme 2 indicate the MFT-TC-based center estimation
approach utililzing divided training samples by eye detection algorithm (MFT-
TC-div) and whole training samples (MFT-TC-whl).

Category Sample MDE (km) Skill score (%)
i f sche 2
size Scheme 1 Scheme 2 of scheme
(MFT-TC-div) (MFT-TC-whl)
TD 303 55.41 56.31 1.60
TS 406 40.49 46.24 12.43
Category 139 25.70 31.39 18.13
1
Category 86 19.33 23.98 19.39
2
Category 46 14.51 20.46 29.08
3
Category 54 9.93 13.55 26.72
4
Category 29 7.04 10.84 35.06
5
Overall 1093 27.44 31.94 14.09

distance(y;,y;) indicates the distance between the reference and esti-
mated centers, N indicates the number of test samples, and MDE,ryposed
and MDE_,; represents the MDE performance of proposed model and
control model, respectively.

To verify the feasibility of sample distribution method and MFT-
based model, we conduct two steps of evaluation. First, two schemes
according to sample divided method (i.e., Scheme 1 and 2) were eval-
uated according to the intensity: Scheme 1, which divides the datasets
based on the absence and presence of TC eye, Scheme 2, which uses the
entire combined dataset. Subsequently, based on the optimized scheme,
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the performance of MFT-TC is evaluated compared to the single CNN-
based TC center estimation models, which widely utilized in previous
studies (e.g., Wang et al., 2024; Ho et al., 2024). In this study, the
scheme-wise performance is evaluated not only for the overall perfor-
mance but also for the categorical performance based on the
Saffir-Simpson criteria (Table 3).

4. Results and discussion

4.1. Performance of MFT-TC according to the presence and absence of TC
eye

The quantitative evaluation of the MFT-TC utilized two test sets (TCs
in 2019 extracted from COMS MI and TCs in 2021 extracted from GK2A
AMI). As TCs have structural characteristics that depend on their in-
tensity, two schemes (i.e., training divided samples according to
whether the TC contains eyes or not (scheme 1, MFT-TC-div) and using
whole TC datasets (scheme 2, MFT-TC-whl) were tested. Table 4 pre-
sents a comparison of the performance of the two schemes using the
MDE, and SS of scheme 2 as the key evaluation metrics. Overall, scheme
2 shows better performance compared to scheme 1, with SS of 14.09 %.
In particular, scheme 2 outperforms scheme 1 across all categories, from
TD to category 5 TC, with the skill scores improving as the TC category
increases. The most notable improvement is observed in Category 5,
with an SS improvement of 35.06 %. This implies that classifying the
samples into those with and without the TC eye and then training them
separately is highly beneficial in detecting center of strong TCs.

4.2. Performance of the multi-task feature transfer deep learning-based
TC center detection

After verifying the efficiency of Scheme 1, the performance of MFT-
TC is evaluated in terms of both detection performance and computing
cost through comparing with widely used single CNN-based TC center
estimation approach. Fig. 5 illustrates the MDEs based on their in-
tensities. As the TC intensifies, the general center determination per-
formance improves linearly. Notably, MFT-based TC detection
consistently maintained lower errors than the single-CNN-based ap-
proaches. Especially in the moderate intensity range (55-80 knots)
without TC eyes, significant improvements are noted in MFT-TC-based
TC center detection, with improvements ranging from 12 % to 39 %.
Previous studies have indicated that because of the structural ambiguity
of unorganized TCs, it is difficult to specify TC using normal visual in-
spection analysis (Chaurasia et al., 2010; Zheng et al., 2019; Shin et al.,
2022). To mitigate this limitation, it is necessary to propose a novel
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Fig. 5. Mean distance error according to intensities of multi-task feature transfer deep learning-based tropical cyclone center estimation model (MFT-TC) and single
convolutional neural networks (single-CNN)-based center estimation model. Red and gray bars indicate intensity-wised mean distance error of MFT-TC and single-

CNN-based estimation results, respectively.
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Fig. 6. Examples comparing Mult-task feature transfer deep learning (MFT) and single convolutional neural networks (Single-CNN, Control 1)-based TC center
detection results. Red circle indicates the reference TC center location by the joint typhoon warning center (JTWC) best track. Blue and Yellow triangles indicate
MFT-TC and single-CNN-based TC center detection results, respectively. The corresponding date, time (UTC), and the wind speed in knots are annotated on

each subfigure.

approach for efficiently estimating the TC center location. At this point
of view, proposed model significantly captures the large-scale rough
pattern of the TC, which is related to center detection, and the feature
information was successfully transferred to the bottom module. Fig. 6
depicts the center-detection performance, particularly for TCs without
eyes. When the eye of the TC is absent, center determination inevitably

relies on spiral structural characteristics. Therefore, it is difficult to
determine the center location. When using the single-CNN-based TC
center estimation, the model mainly focuses on the global cyclonic
pattern to estimate TC center location. On the other hand, the hierar-
chical structure of the MFT-TC model enables the capture of both the
general outflow pattern of TCs and the sequential transition to
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Table 5

Comparison of previous studies and the current method for tropical cyclone
center estimation. 1° of latitude and longitude correspond 111.32 km and cos
(latitude)*111.32 km, respectively.

Proposed Method Dataset Spatial Evaluation MAE
study resolution target
Wang CNN Himawari- 2 km 2008 to Longitude
et al. 8 2011 and 0.237° and
(2020) 2017 to Latitude
2019 0.237°
Zheng Cloud- 3 TC cases 41 km
et al. derived
(2019) wind
motion
Shin et al. Fitting COMS 4 km 2019 TCs 0.38°
(2022) TC spiral
band
Wang CNN Himawari- 2 km 39.1 km
et al. 8
(2021)
Wang CNN Himawari- 2 km Randomly 29.3 km
et al. 8 separated
(2024) TCs from
2015 to
2018
Control CNN COMS and 4 km 2019 and 32.08 km
using GK2A 2021 TCs
single
CNN
Proposed MFT-TC- COMS and 4 km 2019 and 27.44 km
(scheme  div GK2A 2021 TCs
D
Proposed MFT-TC- COMSand 4 km 2019 and 31.94 km
(scheme  whl GK2A 2021 TCs
2)
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Fig. 7. Scatter plot of distance error against to the radius to the maximum
wind. X-axis and Y-axis indicate the radius of maximum wind and distance
error, respectively. The scatter color varies based on the intensity. R indicates
the correlation from canonical crrelation analysis.

high-resolution modules, making it possible to improve center detection
performance. Furthermore, the proposed model shows significant im-
provements in computational efficiency as well. While the
single-CNN-based approach requires high dimensional input datasets
which cover holistic TC regions with fine resolution, the MFT-TC works
with low dimensional input datasets of varying scaled and resolutions (i.
e., large-area TC images with low spatial resolution and focusing TC core
regions with fine resolution). In this study, the MFT-TC method
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Fig. 8. The mean TC center estimation errors at each grid point of the western
North Pacific for the MFT-TC (a) and the control model (b), and their differ-
ences (c¢).

significantly reduced the number of modeling parameters used in a
single-CNN model from 43,607,698 to 22,863,290. This not only
streamlined the model but also enhanced its overall computational ef-
ficiency by 47 %. Table 5 represents the performance of previous
studies. While differences in validation data limit direct comparison, we
can still assess the overall range of errors across studies. The results show
that our method, which utilizes a 4 km spatial resolution, achieves
performance comparable to or even better than other models that use a
higher 2 km resolution. This suggests that our approach not only reduces
computational time but also contributes to performance improvement.

The error in TC center estimation may depend not only on intensity
but also on TC size, particularly the size of the TC eye. To investigate
this, we analyzed the correlation between the Radius of Maximum Wind
(RMW), which is closely related to TC eye size, and the TC center
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Fig. 9. Heat map-based explainability analysis of single convolutional neural networks (Single CNN)- and multi-task feature transfer deep learning model-based TC
center estimation model (MFT-TC) using non-eye samples. Second and third columns (—3 and —4) indicate the estimated results from Single-CNN and MFT-TC. Red
dot and blue star represent estimated and reference TC center. Distance error (DE) indicates the estimation error between Single-CNN and MFT-TC-based estimated
center and reference, and DEs are shown in the third and fourth columns. While the first and second column (-1 and —2) indicates heat maps from Single CNN-based
TC center estimation model over the corresponding area with 4 km and 12 km module inputs. The fifth, and sixth column (-5 and —6) imply the heat maps from 12

km to 4 km modules in MFT-TC model, respectively.

estimation error based on the MFT-TC method (Fig. 7). The results show
a weak but noticeable trend of decreasing error as RMW decreases (r =
0.32, p = 0.03). This tendency is associated with the fact that lower
RMW values are generally linked to stronger TCs (Li et al., 2021; Wu
et al., 2021; Ruan et al., 2022). That is, as RMW decreases, TC intensity
tends to increase (as shown by the color scale in Fig. 7), and strong TCs
generally have lower TC center estimation errors, so the smaller the
RMW, the lower the error tends to be.

Fig. 8 compares the mean TC center estimation errors between the
MFT-TC and the control model at each grid point of the western North
Pacific. Here, it is evident that the mean distance error is higher near the
coastline. Generally, when a TC makes landfall, its energy source from
the warm ocean is cut off, and increased friction with the land surface
causes the TC to weaken and undergo rapid structural changes. This
makes TC center estimation more challenging, ultimately leading to
increased errors near the coastline. On the other hand, as a TC in-
tensifies, its eye becomes more distinct, and its symmetry increases. This
makes TC center estimation easier, leading to reducing errors (see
Fig. 5). By examining the error differences between MFT and control
(Fig. 8c¢), it can be seen that when the TC forms and develops over the
open ocean and approaches land, its weak intensity and disorganized
structure result in larger TC center estimation error and at these regions,
the greatest error improvements occur.

4.3. Interpretation of single CNN- and MFT-based TC center estimation

In this study, the proposed model (MFT-TC) achieves a significant
performance in terms of accuracy as well as computational efficiency
compared to the single CNN-based model. Notably, when the samples
are categorized based on the presence or absence of an eye, overall
performance improved by 14.09 % (Table 4). To verify how the MFT-TC
estimates are more accurate compared to the single CNN-based one, heat
map visualization approach was used in this study. It is one of the
visualization approaches for verifying how the CNN-based model ana-
lyzes the input dataset for extracting output (Selvaraju et al., 2017). The
aggregated feature map that comes from each convolution block shows
the activated region of the feature, and the last activation map is widely
used for the heat map of the model. Thus, we utilized the heat map from
the last convolution block for the discussion. Figs. 9 and 10 represent the
visualization of single CNN and MFT-TC model trained on Scheme 1
(MFT-TC-div), which are results from the models trained using non-eye
samples and eye-contained samples, respectively. When comparing in
the single CNN-based heatmaps (Fig. 9 (a,b,c,d—1,2) and Fig. 10 (a,b,c,
d—1,2)), the model trained with eye-contained samples tends to mostly
focus on the central region while non-eye-based one tends to consider
the general pattern of whole TC structure. It implies that, when the TC
contained eye, it shows slightly easy to capture the central region in the
raw resolution-based whole TC observations. On the other hand, when
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Fig. 10. Same as in Fig. 9, but using eye-contained samples.

the TC center location was estimated using MFT-TC (Fig. 9 (a,b,c,d,—5,
6) and Fig. 10 (a,b,c,d,—5, 6)), the figures show that the general TC
spiral flows were well captured in the synoptic-scale module (i.e., 12 km
module). As the modules become more specific, they focus increasingly
on the central region (the estimated TC center).

In the case of Fig. 9 (c), since the TC is very weak with 25 kts of
intensity, it is hard to generalize the region of center location; the single
CNN-based estimation results showed 139.92 km of DE. On the other
hand, MFT-TC achieved 30.32 km of DE in the same case. It tends to
analyze the TC structure hierarchically module by module; synoptic
pattern is activated in the 12 km module while spiral flow was activated
in the 4 km module. In the case of Fig. 9 (d), MFT-TC performed sig-
nificant improvement compared to Single-CNN-based one with consid-
ering multi-scaled pattern simultaneously in the one model. In the case
of the eye-contained-based models (i.e., Fig. 10), both of single CNN and
MFT-TC represents more accurate performance compared to the non-
eye-based models (i.e., Fig. 10). Nevertheless, the proposed MFT-TC
shows significant improvement compared to the single-CNN-based
one. It also implies that the essentiality of hierarchical analyzing
multi-scaled observations and supposes that the potential of MFT
approach could be utilized when addressing multiple spatial and tem-
poral scaled is necessary.

5. Conclusion
This study suggested a novel MFT-TC approach using geostationary

satellite observations. By integrating feature connections across
different spatial resolutions with multiple tasks, the proposed approach

10

shows significant improvements in prediction accuracy over traditional
single-CNN methods. Our results indicate that higher spatial resolution
satellite images combined with feature-connected modules enhance the
precision of TC center estimation and computing efficiency. Further-
more, two types of sample distribution (i.e., Scheme 1 and 2) were
validated to verify the feasibility of sample dividing according to the
existence of eye or not. Through quantitative evaluation of center esti-
mation results, scheme 1-based TC center estimation (i.e., MFT-TC-div)
achieved significant improvement of 14.08 % compared to Scheme 2 (i.
e., MFT-TC-whl). This result implies that it is necessary to divide the TC
samples according to its structural characteristics in order to accurately
determine its center. Based on the most optimized scheme (i.e., Scheme
1), performance of MFT-TC was evaluated through comparing with a
single CNN-based optimized TC center estimation model, which has
been widely used in previous studies. MFT-TC achieved significant skill
score improvement by 39 % compared to a single CNN-based TC center
estimation. Especially in the intensity range of 55-80, developing phase
into a high-intensity TC and where the eye is formed, MFT-TC showed
notable improvements compared to a single CNN-based model. It im-
plies that the MFT-TC-based multi-scaled analysis contributes to the
effective TC center estimation while considering rough large-scaled
spiral pattern as well as specific local central region of TC with high
computational efficiency (decreasing computing costs by 47 %).
Furthermore, to verify how differ the MFT-TC consider the TC ob-
servations comparing to a single CNN-based model, the heatmaps, which
is one of the XAl approaches, has been utilized. These demonstrated that
the MFT-TC is more effectively consider the multi-scaled morphological
characteristics simultaneously, such as synoptic scaled spiral band and
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specific central spatial characteristics around TC center. The proposed
MFT method can be applied not only to TC-centered estimations but also
to the estimation of TC structural characteristics (e.g., intensity, size).
Additionally, although this technique has been applied to TCs in the
western North Pacific, it can also be applied to TCs in other basins.
However, since TC characteristics vary by basin (Moon et al., 2002),
optimizing the model using regional TC data during the training process
can further enhance its performance. By enhancing the accuracy of
current TC center estimation, this study can contribute to improved TC
intensity estimation. Furthermore, such advancements in initial condi-
tion estimation will ultimately aid in improving TC track and intensity
forecasts.
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