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Abstract Eight atmospheric general circulation models (AGCMs) are forced with observed historical
(1871–2010) monthly sea surface temperature and sea ice variations using the Atmospheric Model
Intercomparison Project II data set. The AGCMs therefore have a similar temperature pattern and trend to that
of observed historical climate change. The AGCMs simulate a spread in climate feedback similar to that seen
in coupled simulations of the response to CO2 quadrupling. However, the feedbacks are robustly more
stabilizing and the effective climate sensitivity (EffCS) smaller. This is due to a pattern effect, whereby the
pattern of observed historical sea surface temperature change gives rise to more negative cloud and
longwave clear-sky feedbacks. Assuming the patterns of long-term temperature change simulated by
models, and the radiative response to them, are credible; this implies that existing constraints on EffCS from
historical energy budget variations give values that are too low and overly constrained, particularly at the
upper end. For example, the pattern effect increases the long-term Otto et al. (2013, https://doi.org/10.1038/
ngeo1836) EffCS median and 5–95% confidence interval from 1.9 K (0.9–5.0 K) to 3.2 K (1.5–8.1 K).

Plain Language Summary Recent decades have seen cooling over the eastern tropical Pacific and
Southern Oceans while temperatures rise globally. Climate models indicate that these regional features, and
others, are not expected to continue into the future under sustained forcing from atmospheric carbon
dioxide increases. This matters because climate sensitivity depends on the pattern of warming, so if the past
has warmed differently from what we expect in the future, then climate sensitivity estimated from the
historical record may not apply to the future. We investigate this with a suite of climate models and show that
climate sensitivity simulated for observed historical climate change is smaller than for long-term carbon
dioxide increases. The results imply that historical energy budget changes only weakly constrain
climate sensitivity.

1. Introduction

The relationship between global surface temperature change and the Earth’s radiative response—a measure
of the radiative feedbacks in the system and a key determinant of the Earth’s climate sensitivity—can vary on
timescales of decades to millennia. Thus, feedbacks governing warming over the observed historical record
may be different from those acting on the Earth’s long-term climate sensitivity to rising greenhouse gas con-
centrations (e.g., Armour, 2017; Gregory & Andrews, 2016; Marvel et al., 2018; Proistosescu & Huybers, 2017;
Silvers et al., 2018; Zhou et al., 2016). This is in contrast to decades of studies that explicitly or implicitly
assume that the relationship between historical temperature change and energy budget variations provides
a direct constraint on long-term climate sensitivity (e.g., Gregory et al., 2002; Otto et al., 2013).

The primary reason why radiative feedback and sensitivity is not constant is because climate feedback
depends on the spatial structure of surface temperature change (Andrews et al., 2015; Andrews & Webb,
2018; Armour et al., 2013; Ceppi & Gregory, 2017; Haugstad et al., 2017; Rose et al., 2014; Silvers et al.,
2018; Zhou et al., 2016, 2017). This evolves on annual to decadal timescales with modes of unforced coupled
atmosphere-ocean variability (e.g., Xie et al., 2016) and spatiotemporal variations in anthropogenic or natural
forcings (e.g., Smith et al., 2016; Takahashi & Watanabe, 2016). It also evolves on decadal to centennial time-
scales in response to sustained anthropogenic forcing due to the intrinsic timescales of the climate response
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(such as delayed warming in the eastern tropical Pacific and Southern Oceans; e.g., Andrews et al., 2015;
Armour et al., 2016; Senior & Mitchell, 2000). Thus, the pattern of historical temperature change, and thus
radiative feedback, is expected to be different from that in response to long-term CO2 increases (see
section 5). We refer to the dependency of radiative feedbacks on the evolving pattern of surface temperature
change as a pattern effect (Stevens et al., 2016).

Most previous estimates of climate sensitivity based upon historical observations of Earth’s energy budget
have not allowed for a pattern effect between historical climate change and the long-term response to CO2

(e.g., Otto et al., 2013). Armour (2017) found that the equilibrium climate sensitivity (ECS; the equilibrium near
surface air temperature change in response to a CO2 doubling) of atmosphere-ocean general circulation
models (AOGCMs; estimated from simulations of abrupt CO2 quadrupling [abrupt-4xCO2]) was about 26% lar-
ger than climate sensitivity inferred from transient warming (1% CO2 simulations, taken to be an analogue for
historical climate change) due to pattern effects. Armour (2017) therefore concluded that energy budget esti-
mates of Earth’s ECS from the historical record should be increased by this amount. Lewis and Curry (2018)
argue for a smaller pattern effect, highlighting ambiguities in the methodology when using idealized CO2

experiments as an analogue for historical climate change. However, as noted in Armour (2017), the use of
1% CO2 simulations as an analogue for historical climate change has important limitations in that it neglects
the impact from non-CO2 forcings and unforced climate variability that could have had a significant impact
on the pattern of historical temperature change. In particular, under 1% CO2, AOGCMs do not show cooling of
the tropical eastern Pacific Ocean and Southern Ocean—features that have been observed over recent dec-
ades but are not expected in the long-term response to increased CO2 (Zhou et al., 2016). These are regions
where atmospheric feedbacks (in particular clouds) are sensitive to the patterns of surface temperature
change due to their impact on local and remote atmospheric stability (e.g., Andrews & Webb, 2018; Zhou
et al., 2017). This suggests that the magnitude of the pattern effect reported in Armour (2017) may be too
low relative to historical climate change. This is an outstanding issue that we aim to address and
quantify here.

Here we will show that a suite of atmospheric general circulation models (AGCMs) forced with historical (post
1870) sea surface temperatures (SSTs) and sea ice changes are ideal simulations for quantifying the relation-
ship between historical climate sensitivity and idealized long-term model-derived ECS. They allow us, for the
first time, to quantify the pattern effect associated with observed temperature patterns and so provide
improved updates to estimates of climate sensitivity derived from historical energy budget constraints.
The work builds upon individual studies (Andrews, 2014; Gregory & Andrews, 2016; Silvers et al., 2018;
Zhou et al., 2016). Our aim is to (i) bring together these individual model results for an intercomparison of
AGCMs forced with historical SST and sea ice variations, (ii) explore the dependence of the experimental
design to the underlying SST and sea ice data set, (iii) explore how historical feedbacks in the AGCMs relate
to feedbacks diagnosed from their parent AOGCM forced by abrupt-4xCO2, (iv) quantify the pattern effect
causing the difference between climate sensitivity under historical climate change and long-term CO2

changes, and (v) use this pattern effect to update observed energy budget constraints on Earth’s
climate sensitivity.

2. Simulations, Models, and Data

Eight AGCMs (Table 1) are forced with monthly time-varying observationally derived fields of SST and sea ice
from 1871 to 2010 using the Atmospheric Model Intercomparison Project (AMIP) II boundary condition data
set (Gates et al., 1999; Hurrell et al., 2008; Taylor et al., 2000). All simulations have natural and anthropogenic
forcings (e.g., greenhouse gases, aerosols, solar radiation, etc.) held constant at assumed preindustrial condi-
tions (except CAM4, which used assumed constant present-day conditions; we assume the level of back-
ground forcing has no impact on the diagnosed feedback of the model). With constant forcings the
variation in radiative fluxes comes about solely from the changing SST and sea ice boundary conditions,
allowing radiative feedbacks to be accurately diagnosed directly from top-of-atmosphere (TOA) radiation
fields (e.g., Haugstad et al., 2017). For details of individual simulations see Gregory and Andrews (2016) for
HadGEM2 and HadAM3; Silvers et al. (2018) for GFDL-AM2.1, GFDL-AM3, and GFDL-AM4.0; and Zhou et al.
(2016) for CAM4 and CAM5.3. We additionally include simulations from ECHAM6.3, which is closely related
to the atmospheric component of the MPI-ESM 1.2 model to be used in CMIP6. This experiment, referred
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to here as amip-piForcing (Gregory & Andrews, 2016), is included in the Cloud Feedback Model
Intercomparison Project contribution to CMIP6 (Webb et al., 2017). The sensitivity of the results to the
AMIP II boundary condition data set is explored with analogous experiments using the HadISST2.1 SST and
sea ice data set (Titchner & Rayner, 2014; supporting information).

All simulations ran for 140 years from January 1871 through to December 2010, except for GFDL-AM2.1 and
GFDL-AM3, which finished in December 2004. All data are global annual mean, and anomalies are presented
relative to an 1871–1900 baseline. CAM4 and CAM5.3 results are single realizations; HadGEM2 and HadAM3
simulations are ensembles of four realizations each; ECHAM6.3, GFDL-AM2.1, and GFDL-AM4.0 have five rea-
lizations each; while GFDL-AM3 has six realizations. The HadGEM2 results are not identical to those presented
in Gregory and Andrews (2016) because it has been discovered that land cover change was included in their
HadGEM2 simulations. We have confirmed that the updated simulations used here, which have constant land
cover, do not affect the main conclusions of Gregory and Andrews (2016). In fact the multidecadal variability
in feedback in HadGEM2 is now found to be more consistent with their HadAM3 results (section 3).

For comparison to long-term climate sensitivity and feedback parameters we make use of an abrupt-4xCO2

simulation of each AGCM’s parent AOGCM. For CAM4, GFDL-AM2.1, GFDL-AM3, and HadGEM2 we use the
CCSM4, GFDL-ESM2M, GFDL-CM3, and HadGEM2-ES CMIP5 abrupt-4xCO2 simulations, respectively (Taylor
et al., 2012). Feedbacks and associated effective climate sensitivity (EffCS; the equilibrium near surface air
temperature change in response to a CO2 doubling assuming constant feedback strength) are derived from
the regression of global annual mean change in radiative flux dN against surface air temperature change dT
for the 150 years of the simulation, according to EffCS =�F2x/λ, where F2x, the forcing from a doubling of CO2,
is equal to the dN axis intercept divided by 2 (to convert 4xCO2 to 2xCO2) and λ, the feedback parameter, is
equal to the slope of the regression line (Andrews et al., 2012). We have similar simulations for ECHAM6.3 and
HadAM3 using the MPI-ESM 1.1 and HadCM3models, respectively, though these are not in the CMIP5 archive.
The HadCM3 simulation is only 100 years long but is a mean of seven realizations. CAM5.3 and GFDL-AM4.0
do not yet have equivalent coupled 4xCO2 simulations. We choose to use EffCS rather than the true ECS since
few AOGCMs are run to equilibrium, and thus, the true ECS is not generally known. Paynter et al. (2018)
showed that the actual ECS from multimillennial GFDL-ESM2M and GFDL-CM3 simulations was nearly 1 K
higher than the EffCS we use here from abrupt-4xCO2. Hence, the values we report for EffCS might be viewed
as a lower bound on ECS if other models behave in a similar way.

3. Radiative Feedbacks and Sensitivities

Figure 1a shows the global annual mean near surface air temperature change (dT) of the eight individual
AGCM amip-piForcing simulations in comparison to HadCRUT4 (Morice et al., 2012). As expected the models
capture the observed variability and trends in dT well (the correlation coefficient, r, between observed and

Table 1
Feedback Parameters in amip-piForcing (λamip) and abrupt-4xCO2 (λ4xCO2) Atmospheric General Circulation Model and Atmosphere-Ocean General Circulation
Model experiments

Model

λamip λ4xCO2 S = λ4xCO2/λamip Δλ = λ4xCO2 – λamip EffCSamip EffCS4xCO2

(W·m�2·K�1) (W·m�2·K�1) (W·m�2·K�1) (K) (K)

CAM4 �2.27 �1.23 0.54 1.04 1.57 2.90
CAM5.3 �1.71 n/a n/a n/a n/a n/a
ECHAM6.3 �1.90 �1.36 0.72 0.54 2.17 3.01
GFDL-AM2.1 �1.67 �1.38 0.83 0.29 2.01 2.43
GFDL-AM3 �1.40 �0.75 0.53 0.65 2.13 3.99
GFDL-AM4.0 �1.91 n/a n/a n/a n/a n/a
HadAM3 �1.65 �1.04 0.63 0.61 2.14 3.38
HadGEM2 �1.37 �0.64 0.47 0.73 2.14 4.58
Mean(1.645*σ) �1.74(0.48) �1.07(0.52) 0.62(0.22) 0.64(0.40) 2.03(0.38) 3.38(1.29)

Note. S and Δλ are the ratio and differences between λ4xCO2 and λamip, respectively. These are used to update feedback parameters derived from historical energy
budget changes to account for the pattern effect between historical climate change and abrupt-4xCO2. EffCSamip =�F2x/λamip and EffCS4xCO2 =�F2x/λ4xCO2 are
the effective climate sensitivities from the amip-piForcing and abrupt-4xCO2 experiments, where F2x is the model’s effective radiative forcing for a doubling of
CO2 (calculated from the abrupt-4xCO2 experiments using a linear regression technique as per Andrews et al., 2012).

10.1029/2018GL078887Geophysical Research Letters
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simulated dT is>0.95 for every model). However, the AGCMs omit the small part of the recent warming trend
over land that arises as a direct adjustment to changes in CO2 and other forcing agents (dT in HadCRUT4
averaged over 2000–2010 is 0.79 K, whereas it ranges from 0.66 to 0.76 K in the AGCMs; see also, Andrews,
2014; Gregory & Andrews, 2016). Figure 1b shows the net top-of-atmosphere radiative flux change, dN. It is
generally negative because as dT increases positively the planet loses heat to space. This relationship is
shown in Figure 1c for the multimodel ensemble mean. The slope of the regression line (ordinary least
squares, over the annual mean 1871–2010 time series data) measures the feedback parameter λamip (in
W·m�2·K�1), where subscript amip is used to indicate that the feedback parameter was derived from the
amip-piForcing experiment. Individual model results are given in Table 1.

The equivalent feedback parameters derived from six available parent AOGCM abrupt-4xCO2 simulations
(λ4xCO2) are compared to λamip in Figure 2 and Table 1. We find that λamip is more negative than λ4xCO2 in
all models. In other words, AGCMs forced with historical SST and sea ice changes robustly simulate more sta-
bilizing feedbacks (lower EffCS) than their parent AOGCM forced by long-term CO2 changes. On average, the
difference in λ between amip-piForcing and abrupt-4xCO2 is Δλ = λ4xCO2 � λamip = 0.64 W·m�2·K�1, ranging
from 0.29 to 1.04 W·m�2·K�1 across the AGCMs (Table 1).

Figure 1. (a) Comparison of historical near-surface air temperature change (dT) simulated by the atmospheric general cir-
culation models in amip-piForcing (individual black lines) against observed (HadCRUT4) variations (red). (b) Time series of
the change in net top-of-atmosphere radiative flux (dN) in the individual atmospheric general circulation model experi-
ments. (c–f) The relationship and correlation coefficient (r) between the multimodel ensemble mean (c) dN; (d) longwave
clear-sky radiative flux change, dLWcs; (e) shortwave clear-sky radiative flux change, dSWcs; and (f) cloud radiative effect
change, dCRE, against dT. All points are global annual means covering the historical period (1871–2010), and fluxes are
positive downward. Changes are relative to an 1871–1900 baseline.

10.1029/2018GL078887Geophysical Research Letters
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The source of Δλ is shown in Figure 2. The clear-sky feedback (Figures 1d and 1e) is slightly (but robustly)
more negative in amip-piForcing compared to abrupt-4xCO2 (Figure 2b) due to differences in longwave
(LW) clear-sky feedback processes that are partly offset by shortwave (SW) clear-sky feedback differences
(Figure 2d). This difference in clear sky feedback between amip-piForcing and abrupt-4xCO2 explains the
relatively small change in net sensitivity between these experiments for the GFDL-AM2.1 model. For the other
models, differences in cloud feedback (measured by changes in cloud radiative effect, CRE) (Figure 1f) are a
larger source of the reduced sensitivity in amip-piForcing (Figure 2c). This mostly comes from SW cloud
feedback processes, with historical LW cloud feedback processes generally being representative of that seen
in abrupt-4xCO2 (Figure 2e). These findings are consistent with process-orientated studies that suggest lapse-
rate (which affect LW clear sky) and low-cloud (which affect SW, NET, and CRE) feedbacks vary the most with
SST patterns, especially in the Pacific (see below and Andrews et al., 2015; Andrews & Webb, 2018; Ceppi &
Gregory, 2017; Rose et al., 2014; Silvers et al., 2018; Zhou et al., 2016, 2017).

In amip-piForcing the model mean EffCSamip =�F2x/λamip is ~2 K, ranging from 1.6 to 2.2 K across the AGCMs
(Table 1). The narrowness of this EffCSamip range does not arise due to reduced uncertainty in λamip relative to
λ4xCO2. On the contrary, the spread (measured by 1.645*σ) in λamip is almost the same size as the spread in
λ4xCO2 (Table 1). The spread in EffCSamip is narrower primarily because λamip is on average more negative

Figure 2. Relationship between the feedback parameter evaluated by regression of dN against dT over the historical period
(1871–2010) in amip-piForcing (λamip) and 150 years of abrupt-4xCO2 (λ4xCO2) for (a) NET radiative feedback,
(b) clear-sky component, (c) CRE component, (d) LW and SW clear-sky components, and (e) LW and SW CRE components.
(f) Time series of λamip for individual AGCMs evaluated by linear regression of dN against dT in a sliding 30-year
window in the amip-piForcing experiments, the year represents the center of the window. Colored circles in (f) with
horizontal lines show the feedback parameter values from abrupt-4xCO2. LW = longwave; SW = shortwave.

10.1029/2018GL078887Geophysical Research Letters
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than λ4xCO2. Since EffCS depends on the reciprocal of λ, the same spread in λ, shifted to more negative num-
bers, will give rise to a narrower spread in EffCS (e.g., Roe, 2009). A similar spread in in λamip and λ4xCO2 sug-
gests that different patterns of SST change across AOGCMs do not contribute significantly to the spread in
atmospheric feedbacks in abrupt-4xCO2 experiments (see also Andrews & Webb, 2018; Ringer et al., 2014),
which must therefore come about due to differences in atmospheric physics and parameterizations.

EffCS4xCO2 (of the parent AOGCM) is in all cases larger than EffCSamip, ranging from 2.4 to 4.6 K (Table 1). In the
multimodel mean, EffCS4xCO2 is ~67% larger than that implied from EffCSamip. This model mean historical pat-
tern effect is substantially larger than the 26% found by Armour (2017), supporting the hypothesis that the
pattern effect is larger in the historical record than simulated in transient 1% CO2 AOGCM simulations
because the later miss key features of the observed warming pattern. This result is even more striking given
that Armour (2017) used an EffCS definition from abrupt-4xCO2 that gives larger values than ours (they used
years 21–150 of abrupt-4xCO2, whereas we use years 1–150).

It is also useful to study shorter time periods to help inform our understanding of the relationship between
shorter-term variations in temperature and radiative fluxes, as have been used by many studies to estimate
EffCS particularly since the satellite era (e.g., Forster, 2017). Figure 2f shows the feedback parameter for 30-year
moving windows over the historical period in the AGCM simulations (calculated as per Gregory & Andrews,
2016), in comparison to λ4xCO2 (horizontal lines). There is a substantial multidecadal variability in the feedback
parameter that is common to all models, with a peak in feedback parameter (higher EffCS) around the 1940s
and aminimum (lower EffCS) in themost recent decades (post ~1980). Generally, λamip is alwaysmore negative
than λ4xCO2. There are only a few instances where the λamip is similar to λ4xCO2, for example, ~1940 for
HadGEM2 and GFDL-AM2.1, but no instances where λamip is substantially less negative than λ4xCO2. The differ-
ence is greatest in the most recent decades, suggesting that energy budget constraints on ECS based on
recent decades of satellite data will be most strongly biased low. This is consistent with process understanding
of the pattern effect, since recent decades have shown substantial cooling in the eastern Pacific and Southern
Oceans while warming in the west Pacific warm pool (e.g., Zhou et al., 2016). The cooling in the descent region
of the tropical Pacific will favor increased cloudiness (a negative feedback), while warming in the west Pacific
ascent region efficiently warms free tropospheric air (increasing the negative lapse-rate feedback widely across
the tropics and midlatitudes) as well as further increasing the lower tropospheric stability and cloudiness in
the marine low-cloud descent regions (Andrews & Webb, 2018; Ceppi & Gregory, 2017; Zhou et al., 2016).

Most of the multidecadal variation in feedback strength comes from changes in the strength of cloud feed-
back (the correlation between the NET and CRE feedback time series, calculated in a similar way, is >0.94 in
each AGCM), while the clear-sky feedbacks show less variation (not shown). This, as well as atmospheric varia-
bility, helps explain why cloud feedback is not as linearly correlated to dT variations over the full historical
period compared to clear-sky feedbacks (r = 0.48 for CRE compared to 0.99 and 0.93 for the clear-sky
fluxes, Figures 1d–1f).

4. Constraints on Observed Estimates of Climate Sensitivity

The pattern effect causing the difference between simulated EffCS under historical climate change and
long-term CO2 increase implies that historical energy budget constraints on EffCS do not directly apply to
long-term ECS. To account for this, we use the difference in λ between amip-piForcing and abrupt-4xCO2

as a measure of the pattern effect to update historical energy budget estimates of λ and EffCS. This is in
contrast to Armour (2017) who had to use 1% CO2 simulations as a surrogate for historical climate change.
Here we are quantifying the pattern effect associated with patterns of temperature change that actually
occurred in the real world, relative to those simulated by AOGCMs to long-term CO2 increases. The pattern
effect therefore assumes that long-term warming patterns in AOGCMs not yet seen in the historical record,
and the radiative response to them, are credible (see section 5).

To illustrate the impact of the pattern effect we use the Otto et al. (2013) historical energy budget constraints
as our starting point, though other data sets exist (see Forster, 2017) and clearly the EffCS estimates pre-
sented below will depend on this. First, we reproduce the historical EffCS estimates reported in Otto et al.
(2013) using their best estimate and 5–95% confidence intervals for the historical (denoted by subscript hist)
change in temperature (dThist = 0.48 ± 0.2 K), heat uptake (dNhist = 0.35 ± 0.13 W/m2) and radiative forcing
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(dFhist = 1.21 ± 0.52 W/m2) for the 40-year period 1970–2009 relative to
preindustrial (which they define as 1860–1879; their Table S1, row 5). To
be consistent with Otto et al. (2013) we also use their forcing and its uncer-
tainty for a doubling of CO2 (F2x = 3.44 (±10%) W/m2). We randomly sam-
ple (with replacement) 10 million times from the Gaussian distributions of
dThist, dNhist, dFhist, and F2x to calculate λhist = (dNhist � dFhist)/dThist and
EffCShist =�F2x/λhist. We assume the uncertainty in F2x and the greenhouse
gas component of dFhist are correlated as in Otto et al. (2013). The resulting
EffCS values are binned into intervals of 0.02 and normalized to produce a
probability density function (PDF), excluding values less than 0 and greater
than 20. The resulting PDF and percentiles (Figure 3, black lines) recovers
the Otto et al. (2013) EffCShist median (1.9 K) and 5–95% confidence inter-
val (0.9–5.0 K) to within 0.1 K.

Following Armour (2017), we update the Otto et al. (2013) EffCS estimate
for the pattern effect between historical climate change and abrupt-
4xCO2 using twomethods. We first scale the historical feedback parameter
λhist by the ratio of the feedbacks found in the amip-piForcing and abrupt-
4xCO2 simulations, so λ = λhist*S where S = λ4xCO2/λamip (Table 1). EffCS is
then given by EffCS = �F2x/λ = �F2x/(λhist*S; equivalent to Equation 4 in
Armour, 2017). Alternatively, we update λhist by the difference in feed-
backs, according to λ = λhist + Δλ, where Δλ = λ4xCO2 � λamip. EffCS is then
given by EffCS = �F2x/λ = �F2x/(λhist + Δλ; equivalent to Equation 5 in
Armour, 2017). We then calculate the EffCS PDF as above by randomly
sampling from the F2x and λhist distributions, along with S and Δλ chosen

randomly with equal likelihood from the individual model results (Table 1). Note that using the difference
(Δλ) approach increases the likelihoodof returning very large (or evennegative) EffCS values, since λ= λhist +Δλ
can result in λ values close to 0 or even with a changed sign when sampling λhist values that are small. Hence,
the results of this method are potentially sensitive to the assumption of excluding negative EffCS values or
those greater than 20 K.

We compare the PDF of EffCShist (which is an approximation of Otto et al., 2013) against its updated versions
that accounts of the pattern effect in Figure 3. The Otto et al. (2013) median and 5–95% confidence interval
increases from 1.9 K (0.9–5.0 K) to 3.2 K (1.5–8.1 K) using the ratio (S) approach (Figure 3, red lines) or 2.7 K
(1.1–10.2 K) if we use the difference (Δλ) approach (Figure 3, blue lines). Alternatively, if we take the Otto et al.
(2013) data relating to their most recent decade (2000–2009; their Table S1 row 4) then the Otto et al. (2013)
estimate and 5–95% confidence interval increases from 2.0 K (1.2–3.9 K) to 3.3 K (1.8–6.8 K) using the ratio
approach or 3.0 K (1.5–9.7 K) using the difference approach. Thus, either way and for different time periods,
the pattern effect from amip-piForcing to abrupt-4xCO2 results in a substantial median ECS increase, while
the lowest values of ECS become less likely, and higher ECS values become much harder to rule out.

Another way of estimating the pattern effect is by comparing feedbacks in AOGCM historical simulations to
abrupt-4xCO2 (e.g., Marvel et al., 2018; Paynter & Frölicher, 2015). However, we believe amip-piForcing is
superior, because (i) the diagnosed pattern effect in an AOGCM historical simulation will depend on its ability
to correctly simulate the patterns of historical climate change, including the magnitude and timing of
unforced variability, which they are not expected to simulate correctly (e.g., Mauritsen, 2016; Zhou et al.,
2016) and (ii) determining feedbacks in AOGCM historical simulations requires knowledge of the time-
varying effective radiative forcing of the model, something which is not routinely diagnosed and is difficult
to assume because of model diversity in forcing, particularly from aerosols (Forster, 2017). The amip-
piForcing approach alleviates both of the above issues.

Note that for simplicity in the above calculations we have assumed that λamip (calculated via linear regression
over the amip-piForcing simulations, section 3) is appropriate to the time periods and methodology of Otto
et al. (2013; who use finite differences, rather than linear regression, between decades to calculate changes).
To check this we recompute λamip and the corresponding S and Δλ values using the same method and time
periods as Otto et al., that is, λamip = dN/dT, where dN and dT are averaged over the relevant decades (though

Figure 3. Comparison of the effective climate sensitivity probability distribu-
tion function from a historical energy budget constraint (Otto et al., 2013),
before (black) and after (colors) accounting for the pattern effect between
historical climate change and abrupt-4xCO2. Red accounts for the pattern
effect by scaling the historical feedback parameter λhist by the ratio
(S = λ4xCO2/λamip) of the feedbacks found in the amip-piForcing and abrupt-
4xCO2 simulations. Blue accounts for the pattern effect by adding the dif-
ference in feedbacks (Δλ = λ4xCO2 � λamip) to λhist (see section 4 and
Table 1). Box plots show the 5–95% confidence interval (end bars), the
17–83% confidence interval (box ends), and the median (line in box).
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for 2000–2009 we use the 1995–2004 decade, since the GFDL runs finished in 2004). We cannot use an iden-
tical baseline as Otto et al. (2013) since our simulations begin in 1871 and their baseline begins in 1860.
Regardless, for 1979–2009 or 2000–2009, the resulting updated EffCS PDF has a median and 5–95% confi-
dence interval to within ±15% of the regression methods used above. Hence, in practice our conclusions
are not sensitive on this assumption.

5. Summary and Discussion

An intercomparison of AGCMs forced with historical (post 1870) SSTs and sea ice from the AMIP II boundary
condition data set reveal some common results:

1. When AGCMs are forced with historical SST and sea ice changes, the models agree on an EffCS of ~2 K, in
line with best estimates from historical energy budget variations (e.g., Otto et al., 2013) but significantly
lower than the EffCS of the corresponding parent AOGCMs when forced with abrupt-4xCO2 (~2.4–4.6 K
for the corresponding set of models).

2. The lower historical EffCS relative to abrupt-4xCO2 is predominantly because LW clear-sky and cloud
radiative feedbacks are less positive in response to historical SST and sea ice variations than in long-
term climate sensitivity simulations. This is an example of what is called a pattern effect (Stevens et al.,
2016) and is consistent with process understanding that suggests that lapse-rate and low-cloud feedbacks
vary most with SST patterns, especially those in the tropical Pacific ascent/descent regions, which have
large impacts on atmospheric stability (Andrews & Webb, 2018; Ceppi & Gregory, 2017; Zhou et al., 2016).

3. The models agree that the most recent decades (e.g., 1980–2010) generally give rise to the most negative
feedbacks (lowest EffCS). Hence, the pattern effect will be largest for estimates of feedbacks and EffCS
based on the satellite era. This is a period when the eastern tropical Pacific and Southern Oceans, regions
important for the pattern effect, have been cooling but are not expected to continue to do so in the long-
term response to increased CO2 (e.g., Zhou et al., 2016).

The pattern effect causing the difference between EffCS under historical climate change and long-term
CO2 changes implies that current constraints on climate sensitivity that do not consider this give values
that are too low and are overly constrained, particularly at the upper bound. We present an approach to
adjust historical energy budget-derived EffCS estimates for the pattern effect. For example, the historical
(1860–1879 to 1970–2009) observational EffCS estimate (median) and 5–95% confidence interval of Otto
et al. (2013) increases from 1.9 K (0.9–5.0 K) to 3.2 K (1.5–8.1 K) using an approach that scales the histor-
ical feedback parameter by the ratio of the feedbacks found in amip-piForcing and abrupt-4xCO2. Thus,
the pattern effect increases historical EffCS median values, reduces the likelihood of the lowest EffCS
values and makes higher values significantly harder to rule out. Determining whether values toward
the extremes of these bounds are plausible would require further understanding of the pattern effect
or assessing and combining other lines of evidence, such as from process understanding (see Stevens
et al., 2016). This is important because a higher EffCS increases the risk of state-dependent feedbacks
and large warmings (Bloch-Johnson et al., 2015).

The pattern effect between historical climate change and long-term CO2 increase assumes that key
aspects of long-term warming patterns simulated by AOGCMs not yet seen in the observational record,
such as substantial warming of the Southern Ocean and eastern tropical Pacific, and the radiative
response to them, are credible. Such patterns are consistent with paleo records (e.g., Fedorov et al.,
2015; Masson-Delmotte et al., 2013) and basic physical understanding of the behavior and timescale of
oceanic upwelling (e.g., Armour et al., 2016; Clement et al., 1996; Held et al., 2010), though they are diffi-
cult to observationally constrain (Mauritsen, 2016). To argue for a negligible pattern effect (e.g., Lewis &
Curry, 2018) would require that atmospheric feedbacks are insensitive to patterns of temperature change
or that the pattern of observed historical temperature change represents the equilibrated pattern
response to increased CO2. This is at odds with basic physical understanding and bodies of work on
the role for unforced variability, transient effects, and non-CO2 forcings such as aerosols on the pattern
of historical climate change (e.g., Armour et al., 2016; Held et al., 2010; Jones et al., 2013; Takahashi &
Watanabe, 2016; Xie et al., 2016). Further progress in constraining the pattern effect and EffCS will come
from improved understanding of the causes and processes of surface temperature change patterns in
observations and AOGCM projections, as well as the radiative response to them.
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